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ABSTRACT
Computationally creative systems for music have recently achieved

impressive results, fuelled by progress in generative machine learn-

ing. However, black-box approaches have raised fundamental con-

cerns for ethics, accountability, explainability, and musical plausi-

bility. To enable trustworthy machine creativity, we introduce the

Harmonic Memory, a Knowledge Graph (KG) of harmonic patterns

extracted from a large and heterogeneous musical corpus. By lever-

aging a cognitive model of tonal harmony, chord progressions are

segmented into meaningful structures, and patterns emerge from

their comparison via harmonic similarity. Akin to a music memory,

the KG holds temporal connections between consecutive patterns,

as well as salient similarity relationships. After demonstrating the

validity of our choices, we provide examples of how this design

enables novel pathways for combinational creativity. The memory

provides a fully accountable and explainable framework to inspire

and support creative professionals – allowing for the discovery of

progressions consistent with given criteria, the recomposition of

harmonic sections, but also the co-creation of new progressions.

CCS CONCEPTS
• Applied computing → Sound and music computing; • Com-
puting methodologies → Knowledge representation and rea-
soning; Ontology engineering.

KEYWORDS
computational creativity, knowledge graphs, music technology

ACM Reference Format:
Jacopo de Berardinis, AlbertMeroño-Peñuela, Andrea Poltronieri, and Valentina

Presutti. 2023. The Harmonic Memory: a Knowledge Graph of harmonic

patterns as a trustworthy framework for computational creativity. In Pro-
ceedings of the ACM Web Conference 2023 (WWW ’23), April 30-May 4, 2023,
Austin, TX, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.114

5/3543507.3587428

1 INTRODUCTION
Creativity has been defined as the ability to come up with new,

surprising, and valuable ideas or artifacts [5]. These can be abstract
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concepts, scientific theories, solutions to real-world problems, but

also new designs and artworks. In her seminal work, Boden cat-

egorised creativity into three types: (i) exploratory, where new

ideas are generated by exploration of a space of concepts; (ii) com-
binational, which enables the creation of new ideas through the

combination of familiar ones; and (iii) transformational, where the
“the rules” governing a space are challenged and transformed, to

generate new kinds of ideas. A computational creativity theory was

also formulated by Colton et al., to describe creative and generative

acts (FACE model) and their potential for impact (IDEA model).

Attempts at formalising human creativity date back to the an-

cient Greeks, and remained up to and beyond Mozart with the

“Dice Game” and Ada Lovelace – speculating that the “calculating

engine” might compose elaborate and scientific pieces of music of

any degree of complexity. Since then, creativity, creative reasoning

and creative problem solving have been extensively researched in

cognitive [4] and computational sciences [23]. A simple definition

of a computationally creative system is that of a model capable to

perform “generative acts” that create artefacts, concepts, or pro-
vide an aesthetic evaluation for the generated outputs [24, 40]. By

harnessing recent advancements in machine learning, a variety of

systems have already been implemented across several domains.

Examples include computational systems for material discovery [9],

molecular design [66], and more broadly, for virtual laboratories

[36]; but also models for generating textual artefacts [52], images

[58, 61], and even recipes [62] from a variety of prompts.

In the music domain, data-driven generative systems based on

deep learning methods have achieved impressive results on sym-

bolic music [7], and they can also produce realistic outputs when

trained on the raw audio [21]. The variety of computationally cre-

ative methods for music is quite broad and diversified, and has al-

ready enabled the exploration of novel forms of artistic co-creation

[33]. These range from the automatic generation, completion, and

alteration of chord progressions and melodies, to the creation of

mashups, and audio snippets from textual prompts [2]. Due to their

success, some of these systems have already been integrated into

commercial software, such as Aiva1 and Amper 2
– allowing users

to generate full music pieces based on their desiderata.

1.1 Fundamental concerns of music AI systems
Nonetheless, having a system that can fully generate realistic music

raises ethical concerns – especially when those systems are made

commercial and can potentially replace artists, rather than aug-

menting their possibilities [65]. Indeed, research can open highly

1
https://www.aiva.ai

2
https://www.ampermusic.com
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Figure 1: Overview of the main steps for the creation of Harmory, from the encoding of chord progressions in the Tonal Pitch
Space (TPS) and their segmentation, to the emergence of harmonic patterns through similarity and the creation of the KG.

lucrative business opportunities given the low cost of non-human

musicians and “their inability to organise in unions to protest against
unfair treatment” [48].

In addition, computationally creative models that fully learn mu-

sic representations from the data bymaximising a learning objective

(e.g. autoregressive, masked prediction, generative modelling) are

often criticised for lacking accountability, explainability, and musi-
cal plausibility. The former is related to the challenge of keeping

track of where the model picks up while generating new musical

content. As the model is unaware of its influences while composing,

this may prevent giving recognition to real artists, which has direct

implication on copyright and revenue sharing [22]. Similarly, the

lack of explainability represents a technological barrier for users,

as there is little or no understanding of the creative process under-

neath. Explainability is a desirable component for computationally

creative systems, as it facilitates the interaction with artists, and

particularly, the ability to control/steer the system based on domain

knowledge [8, 6]. Finally, the “creative space” learned by data-driven

systems is often criticised by musicologists and music experts in re-

gard to musical plausibility [30], meaning that, solutions generated

from these models may violate common notions of music theory.

This fundamentally hampers a potential dialogue and synergies

between music experts and AI researchers.

In sum,mostmusic AI systems cannot yet be deemed trustworthy

by design (accountability, explainability, ethics, etc.) [26], which

raises serious concerns related to their large scale adoption.

1.2 Our contribution
Instead of replacing artists, we believe that research should focus

on leveraging the generative capabilities of these systems to design

novel solutions that can support, enhance and augment the creative

potential of composers as a human-machine collaboration [11].

Inspired by research in music psychology [37], here we present

the Harmonic Memory (Harmory) – a Knowledge Graph (KG) of

harmonic patterns aimed to support creative applications in a fully

transparent, accountable, and musically plausible way.

We leverage a cognitive model of Western tonal harmony to

project chord progressions into a musically meaningful space, and

signal processing methods to segment the resulting sequences into

meaningful harmonic structures. The latter are then compared with

each other, across all progressions and via harmonic similarity,

to reveal common/recurring harmonic patterns. Finally, a KG is

created to semantically establish relationships between patterns,

based on: (i) temporal links, connecting two patterns if they are

observed consecutively in the same progression; and (ii) similarity
links among highly-similar patterns. Trivially, identical patterns do

not need connections, as they are mapped to the same entity.

By traversing the KG, and moving across patterns via temporal

and similarity links, new progressions can be created in a combina-

tional settings; but also, unexpected and surprising relationships

can be found among pieces and composers of different genre, style,

and historical period. This is also enabled by the scale and diversity

of Harmory, which is built from ChoCo [16] – the largest existing

collection of harmonic annotations.

Our main contributions can be summarised as follows.

• The Harmonic Memory (Harmory), a large, diversified, and

musically meaningful KG of harmonic patterns aimed to

support applications of trustworthy machine creativity.

• Underpinning Harmory, we also contribute and validate em-

pirically: (i) a novel method for harmonic structure analysis

in the symbolic domain, that leverages cognitive and musi-

cological models of tonal harmony; (ii) and a state of the art

algorithm for harmonic similarity.

• Examples of possible applications for trustworthy machine

creativity implemented on top of Harmory, focusing on

knowledge discovery and human-machine chord generation.

2 RELATEDWORK
To the best of our knowledge, most machine learning systems are

explorative. Starting from different prompts, such as a priming mu-

sic to continue, an incomplete passage, or a textual query, these

models can generate convincing outputs by sampling from the

learned distribution. These include methods based on recurrent

[64], self-attention [34], and convolutional neural networks [32].

Instead, current combinational systems are dominated by varia-

tional autoencoders, which can create new ideas by interpolating

between two musical passages in a latent space [60]. Transforma-
tive approaches for music have been implemented by “hacking” the

former methods based on the idea of brain transplant, to provide
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additional artistic stimulation [12]. These range from gentler inter-

ventions mixing up corpora, to splicing neural networks, jointly

training with interference, and Frankensteinian hybrid models [67].

As pointed out before, most of these works lack trustworthy

features to support and protect creative professionals. Recently,

Explainable Computational Creativity (XCC) systems have been pro-

posed, to promote a bidirectional interaction between system and

user [44]. This interaction is communicative, enabling the exchange

of decisions and ideas in a format that can be understood by both

humans and machines. Examples of explainable systems also in-

clude [14] – presenting a real-time human-machine interaction for

artwork creation: the system provides explanations for its decisions,

while users can guide the creative process.

Semantic Web technologies have also been used to make creative

systems more explainable. An example is [55], which proposes a

system for creating innovative food combinations using a knowl-

edge graph that describes compounds and ingredients. However, to

the best of our knowledge, no such systems have been proposed in

the musical domain. A notable exception is the work by Meerwaldt

et al., enabling the generation of mashups by leveraging Semantic

Web technologies for machine creativity [40]. Our work differs sub-

stantially in the broader intent and creative applications it enables,

the musicological and cognitive basis, the scope/granularity of the

interconnected musical content (patterns vs full pieces).

3 HARMORY: THE HARMONIC MEMORY
The main steps for the creation of Harmory are illustrated in Fig-

ure 1, and encompass four stages: (i) projection of harmonic se-

quences in the Tonal Pitch Space; (ii) novelty-based segmentation of

harmonic sequences; (iii) pattern identification through similarity-

based linking of harmonic segments; and (iii) KG creation.

Our workflow is defined from the harmonic analysis of a piece,

which contains a sequence of chords in Harte notation [31], their

onsets, and the associated local keys. Formally, let c = {𝑐1, . . . , 𝑐𝑁 }
denote a chord sequence of length 𝑁 , where each chord figure 𝑐𝑖 is

drawn from the Harte chordal set H . Similarly, k = {𝑘1, . . . , 𝑘𝑁 }
denotes the corresponding local keys of c, s.t. each𝑘𝑖 is a tonic-mode

tuple defined from T ×M, where T = {𝐴𝑏,𝐴,𝐴#, 𝐵𝑏, . . . ,𝐺#} is the
set of all possible tonic notes, andM = {major, dorian, . . . , locrian}
is the set of all possible modes in Western tonal music.

For simplicity, chords are expected to be temporally aligned with

their onsets, meaning that 𝑐𝑖 ends when 𝑐𝑖+1 starts, ∀𝑖 ∈ 𝑁 − 1.

Hence, onsets are defined as a (𝑁 + 1)-th dimensional vector t ∈
R𝑁+1

to compensate for the end time of the last chord (𝑡𝑁+1 is the

end of 𝑐𝑁 ). Onsets are given in seconds for harmonic analyses on

audio music; or as global beats for symbolic music. For example, c =
[G, B:min, E:min7, . . . ], k = [(G,major), (G,major), (G,major), . . . ],
and t = [1, 3, 5, . . . ] are the first three occurrences of such vectors

for a “A Day in the Life” by The Beatles.

3.1 Encoding chords in the Tonal Pitch Space
Given a harmonic analysis H = {c, k, t}, the first step is to encode

c and k as a numerical stream, so as to allow the processing of

similarity/distance operations. This is necessary because chords

(c) and tonalities (k) are complex elements to process, and come in

symbolic format. More specifically, a chord label is a convention

for describing intervals built on a root note. For example, the label

of a C major seventh chord (C:maj7) represents the intervals of a
major quadriad with a minor seventh built on the note 𝐶 , which is

equivalent to the note set {𝐶, 𝐸,𝐺, 𝐵𝑏}. Also, the harmonic function

of a chord is contextual to the global (and local) key [1].

One option here is to leverage Representation Learning methods

on symbolic music to learn harmonic embeddings from a large

corpus of chord sequences [39, 41]. These include static embed-

ding methods, such as Word2Vec [47] and Glove [53], as well as

sequence models for contextualised representations, such as ELMo

[54] and BERT [20] – which have proved their efficacy on a variety

of natural language processing tasks. Nonetheless, in the music

domain, representation learning methods have recently started to

gain success for audio music [35], whereas little attention has been

given to symbolic music. This is exacerbated by the challenge of

finding musicological interpretability of the resulting embeddings,

requiring new probing and evaluation methods for music [30].

We aim for an encoding of harmony that is well established, per-

ceptually and musicologically plausible, and explainable by design.

Hence, we rely on the Tonal Pitch Space [42] – a cognitive model of

tonality used in music psychology and computational musicology.

The tonal pitch space
The Tonal Pitch Space (TPS) model [42] provides a scoring mech-

anism that predicts the proximity between musical chords. It is

based on the Generative Theory of Tonal Music [43] and designed

to make explicit music theoretical and cognitive intuitions about

tonal organisation. The model works by comparing any possible

chord to an arbitrary key, by means of the basic space. The basic
space is constituted by five different levels, ordered from the most

stable to the least stable: (i) the Root level; (ii) the Fifths level; (iii) the
Triadic level; (iv) the Diatonic level; and (v) the Chromatic level.

Each level holds one or more notes, indexed from 0 (𝐶) to 11 (𝐵).

The Root level holds the root of a chord (0 for C-major), while the

Fifths level adds the fifth (0, 7 for C-major). The Triadic level has
all the notes in the chord (0, 4, 7 for C major). The Diatonic level
depends on the chord’s key as it holds all the notes of the diatonic

scale of the key (0, 2, 4, 5, 7, 9, 11 for the C major key). Finally, the

Chromatic level holds the chromatic scale (0-11).

The distance between two chords 𝑐𝑖 , 𝑐 𝑗 in keys 𝑘𝑖 , 𝑘 𝑗 is calculated

using the basic spaces of the chords. The basic space is set to match

the key of the pieces (level 𝑖𝑣), and their levels (𝑖-𝑖𝑖𝑖) are adapted

to match the chords to be compared. The Chord distance rule is

applied to calculate the distance. The Chord distance rule is defined

as 𝑑 (𝑥,𝑦) = 𝑗 + 𝑘 , where 𝑑 (𝑥,𝑦) is the distance between chord

𝑥 and chord 𝑦; 𝑗 is the minimum number of Circle-of-Fifths rule

applications to shift 𝑥 into 𝑦, and 𝑘 is the number of non-common

pitch classes divided by 2 in the levels (𝑖-𝑖𝑣) of the basic spaces of 𝑥

and 𝑦. The Circle-of-Fifths rule consists in moving the levels (𝑖-𝑖𝑖𝑖)

four steps to the right or left on level 𝑖𝑣 .

For each comparison between two chords, the TPS returns a

value in [0, 13]. TPS has been demonstrated to be sound both musi-

cologically and perceptually [18, 19], and in this work, it is used to

encode and compare chord-key pairs.
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Figure 2: Example of Harmonic SSM resulting from the appli-
cation of Equation 1 on the TPS signal of “Crazy Little Things
Called Love” by Queen, using a sampling rate 𝑓𝑠 = 1. Four
main block-like structures are visible, correlating with the
musical form of the piece. Smaller, nested harmonic struc-
tures of lower granularity are observed withing these blocks.

3.2 Novelty-based harmonic segmentation
The projection of chord-key pairs (𝑐𝑖 , 𝑘𝑖 ) in the TPS is a funda-

mental requirement to perform harmonic segmentation. First, the

given harmonic annotation H is used to sample a signal X of length

𝑑 = 𝑡𝑁+1 · 𝑓𝑠 , where harmonic observation (𝑐𝑖 , 𝑘𝑖 ) is consecutively
repeated 𝑡𝑖 · 𝑓𝑠 times (its duration), according to a sampling rate

𝑓𝑠 . Each element 𝑥𝑖 ∈ X now encodes an input for the TPS model,

containing the harmonic content at the 𝑖-th sample.

The resulting signal allows for the computation of two harmonic

descriptors, i.e., the Harmonic Profile (or TPS time series), and the

Harmonic self-similarity matrix (SSM) – the entry point for segmen-

tation. The former is defined as a vector q ∈ R𝑑 𝑠 .𝑡 . 𝑞𝑖 = tps(𝑥𝑖 , 𝑘1),
holding the TPS distance between each harmonic observation 𝑥𝑖
and the global key 𝑘1 of the piece (assumed as the first key occur-

rence). Similarly, the Harmonic SSM is a matrix S ∈ R𝑑×𝑑 s.t.

S(𝑛,𝑚) = 1 − tps(𝑥𝑛, 𝑥𝑚)
13

, (1)

where 𝑥𝑖 ∈ X is a column vector; 𝑛,𝑚 ∈ [0 : 𝑑 − 1]; 13 is a

normalisation factor (the maximum TPS value); and the subtraction

from 1 is used to obtain a similarity score from a distance measure.

Self-similarity matrices have been extensively used for structure

analysis, due to their ability to reveal nested structural elements [27,

17] As can be seen from Figure 2, block-like structures are observed

when the underlying sequence shows homogeneous features over

the duration of the corresponding segment. Often, such a homoge-

neous segment is followed by another homogeneous segment that

stands in contrast to the previous one.

To identify the boundary between two homogeneous but con-

trasting segments (2D corner points), we slide a checkerboard kernel

K along the main diagonal of the SSM and sum up the element-wise

product of K and S. A checkerboard kernel can be simply defined

as a box kernel K𝐵 ∈ Z𝑀×𝑀
where 𝑀 = 2𝐿 + 1 is the size of the

kernel, defined by K𝐵 = 𝑠𝑔𝑛(𝑘) · 𝑠𝑔𝑛(𝑙) ∀𝑘, 𝑙 ∈ [−𝐿, 𝐿], where 𝑠𝑔𝑛
is the sign function. This yields a novelty function Δ𝑘𝑒𝑟𝑛𝑒𝑙 (𝑛) for
each index 𝑛 ∈ [1 : 𝑑] of X as follows:

Δ𝑘𝑒𝑟𝑛𝑒𝑙 (𝑛) =
∑︁

𝑘,𝑙∈[−𝐿,𝐿]
K(𝑘, 𝑙) · S(𝑛 + 𝑘, 𝑛 + 𝑙) (2)

for 𝑛 ∈ [𝐿 + 1 : 𝑑 − 𝐿]. When K is located within a relatively

uniform region of S, the positive and negative values of the product
tend to sum to zero (small novelty). Conversely, when K is at the

crux of a checkerboard-like structure of S, the values of the product
are all positive and sum up to a large value (high novelty) [50].

Local maxima of the novelty curve are then used to detect the

boundaries of neighbouring segments that correspond to contrast-

ing harmonic parts. For this, we use a pick peaking method that

applies a smoothing filter to the novelty function (to reduce the

effect of noise-like fluctuations) and uses adaptive thresholding

to select a peak when novelty exceeds a local average [51]. The

detected segment boundaries are used to splitX and the correspond-

ing q into a number of non-overlapping harmonic structures. This

yields q̄ = q̄1, . . . , q̄𝑃 , where 𝑃 denotes the number of structures.

3.3 Linking harmonic segments via similarity
Each harmonic structure q̄𝑖 is then considered for harmonic simi-

larity. Since q̄𝑖 is still a time series (a partition of q, the Harmonic

Profile), we formulate the harmonic similarity between two har-

monic structures by comparing their time series. This is done using

Dynamic Time Warping (DTW) – an algorithm for comparing

time series, which has been widely used across various domains,

including speech recognition [49], pattern recognition [63], and

bioinformatics [71]. In our case, DTW has desirable properties, as

it is invariant to time shifts, and robust to local variations.

Vanilla DTW compares two time series by calculating the cu-

mulative distances between each point/observation. It allows for

non-linear alignment between the time series by considering the

local warping path. The cost matrix, holding the cumulative dis-

tance between each corresponding point, is constructed using the

Euclidean distance, and is formalised as:

𝑑𝐷𝑇𝑊 (q̄𝑖 , p̄𝑗 ) =
√︄ ∑︁

(𝑣,𝑤 )𝜖𝜋
| |𝑞𝑖𝑣 + 𝑝𝑖𝑤 | |2 (3)

where 𝜋 is the optimal warping path – the shortest cumulative

distance between the time series ( found via dynamic programming).

As the computational complexity of vanilla DTW is quadratic in

the sequence length, here we use the Sakoe-Chiba variant. The latter
achieves linear complexity O(𝑁 ·𝑤), by constraining the warping

path within a window of size𝑤 , rather than using all points (𝑁 ).

Prior to the computation of similarities, time series are nor-

malised are resampled to meet the same length, and standardised to

zero mean and unit variance. This has the effect of comparing time

series by looking at their shapes in an amplitude-invariant manner

– which brings us closer to the identification of harmonic patterns.

The latter emerge after retrieving the 𝑘 most similar structures

for each segment q̄𝑖 , and applying a filtration to retain only those
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Figure 3: Illustration of theHarmory Ontology. The diagram uses the Grafoo notation, where yellow boxes are classes, blue/green
arrows are object/datatype properties, green polygons are datatypes, and purple circles are individuals.

structures p̄𝑖 whose 𝑑𝐷𝑇𝑊 (q̄𝑖 , p̄𝑗 ) is below a given threshold. Struc-

tures sharing the same (normalised) TPS time series (𝑑𝐷𝑇𝑊 = 0)

define a distinct harmonic pattern; whereas segments with similar

time series can be grouped within the same pattern family/cluster.

3.4 Knowledge graph creation
An ontology, called Harmory Ontology, was developed for the cre-

ation of the Knowledge Graph (KG). The ontology re-uses the Core

module from the Polifonia Ontology Network (PON) [10], a network
of ontologies for the semantic annotation of musical content. This

allows to link Harmory to ChoCo
3
[16]. We also align to the Music

Ontology [59] – a widely used ontology model in the music domain.

The ontology was realised by applying the eXtreme Design method-

ology [56], which relies on Ontology Design Patterns (ODP) and

on the iterative testing of the produced model against a predefined

set of Competency Questions (CQs).

For each piece, the ontology allows to: (i) store its metadata, such

as title, genre, and artist; (ii) hold the harmonic segmentation (see

Section 3.2); and (iii) relate similar segments (see Section 3.3). This

enables semantic access to the aforementioned data via SPARQL.

Themodel is illustrated in Figure 3, using the Grafoo notation
4
. A

piece of music is expressed bymeans of the class har:MusicalWork,
which is aligned with mo:MusicalWork in the Music Ontology. The

metadata of a work is stored via core:hasTitle, core:hasGenre,
and core:hasArtist, which describe the title, musical genre and

composer or performer of the piece, respectively.

A musical work has a har:SegmentationSituation – a spe-

cialisation of the Situation Pattern [28] describing a segmentation

performed by a specific har:SegmentationAlgorithm that pro-

duces one or more has:Segments. In this context, a harmonic se-

quence is split/partitioned into a number of segments, with their

ordering allowing for reconstruction. Each sequence also holds its

3
ChoCo SPARQL endpoint: https://polifonia.disi.unibo.it/choco/sparql

4
Graffo Notation: https://essepuntato.it/graffoo/

chords, using the class mf:Chord. Each segment is linked to its cor-

responding har:SegmentPattern – an abstraction of the TPS pat-

tern normalised on the temporal axis. Hence, several har:Patterns
may have the same har:SegmentPattern. Similarity relations are

expressed via the class har:SegmentPatternSimilarity, which
relates two Segment Patterns and holds their similarity value via

the datatype property har:hasSimilarityValue.

4 EXPERIMENTS
To validate Harmory, we tested the efficacy of the two central com-

ponents underpinning its creation: the DTW harmonic similarity

(Section 3.3), and the harmonic segmentation (Section 3.2).

4.1 Evaluation of harmonic similarity
We evaluated the DTW harmonic similarity by comparing our im-

plementation with other algorithms for the cover song detection task
– a common benchmark for similarity algorithms in the symbolic

music domain [18, 19].

In this comparison, performance is evaluated using two standard

metrics: First Tier and Second Tier. The former measures the ratio of

correctly retrieved songs within the top (𝐶𝑡 −1) matches to (𝐶𝑡 −1),
where𝐶𝑡 is the size of the song class (e.g. the same composition, or

performance) for track 𝑡 . The First Tier can be formalised as:

𝐹𝑖𝑟𝑠𝑡𝑇𝑖𝑒𝑟 (𝐷 ) =
1

𝑁

𝑁∑︁
𝑡=0

| |𝐿 | (𝐶𝑡−1) | ∩𝐶𝑡 | |
| | (𝐶𝑡 − 1) | | , (4)

where 𝑁 is the set of all tracks in the dataset having at least a

“cover”, and 𝐿(𝐶𝑡−1) denotes the list of matches for track 𝑡 ranked

by similarity – where only the first (𝐶𝑡 − 1) occurrences are consid-
ered. Similarly, the Second Tier is defined as the ratio of correctly

retrieved songs within the best (2𝐶𝑡 − 1) matches to (𝐶𝑡 − 1).

𝑆𝑒𝑐𝑜𝑛𝑑𝑇𝑖𝑒𝑟 (𝐷 ) =
1

𝑁

𝑁∑︁
𝑡=0

| |𝐿 | (2𝐶𝑡−1) | ∩𝐶𝑡 | |
| | (𝐶𝑡 − 1) | | (5)

https://polifonia.disi.unibo.it/choco/sparql
https://essepuntato.it/graffoo/
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Schubert CASD Schubert+CASD

Algorithm TPS Mode Stretch Constraint Normalise First Tier Second Tier First Tier Second Tier First Tier Second Tier
TPSD offset - - - 0.49 0.63 0.62 0.68 0.58 0.67

TPSD profile - - - 0.53 0.74 0.76 0.83 0.69 0.8

DTW offset stretch - - 0.94 0.98 0.53 0.67 0.66 0.76

DTW profile stretch - - 0.97 0.99 0.6 0.69 0.71 0.78

DTW offset stretch sakoe_chiba - 0.96 0.99 0.62 0.7 0.72 0.79

DTW profile stretch sakoe_chiba - 0.97 0.99 0.69 0.77 0.77 0.84
DTW offset stretch itakura - 0.96 0.99 0.55 0.65 0.68 0.75

DTW profile stretch sakoe_chiba yes 0.97 0.99 0.7 0.76 0.79 0.83

LCSS offset - sakoe_chiba - 0.38 0.61 0.03 0.07 0.14 0.24

LCSS offset - itakura - 0.7 0.8 0.14 0.23 0.31 0.41

SoftDTW offset stretch - - 0.93 0.97 0.55 0.69 0.67 0.77

SoftDTW profile stretch sakoe_chiba - 0.98 0.99 0.62 0.73 0.73 0.81

Table 1: Performance of similarity algorithms on cover song detection. The highlighted lines denote the best performing
algorithms, while results in bold indicate the best performance obtained for the First Tier and Second Tier, respectively.

Methods.We compare our DTW similarity (c.f. Section 3.3) with

the following algorithms for harmonic and time series similarity:

• Tonal Pitch StepDistance (TPSD) [18, 19], a state of the art
method that measures the difference between the Harmonic
Profiles (see q in Section 3.2) of the given harmonic sequences.

The difference is determined as the minimal area between

the two time series, after considering all possible horizontal

shifts. TPSD can handle sequences of different length, and

has a time complexity of O(𝑛𝑚 log(𝑛 +𝑚)), where 𝑛 and𝑚

denote the length of the compared chord sequences [3];

• Longest Common Subsequence (LCSS) [68], a method

expressing time series similarity based on their longest com-

mon subsequence. Similarity is calculated as the relative

length of the longest common subsequence compared to

the length of the shortest time series, thus ranging in [0, 1].
Using dynamic programming, LCSS is bounded in O(𝑛2);

• Soft Dynamic Time Warping (Soft DTW) [15], a variant
of DTW that allows for non-binary (fuzzy) alignments be-

tween time series, by using a sof-constraint. Soft DTW can

be computed with quadratic time/space complexity.

All experiments are performed on the Harmonic Profile, in ad-

dition to an alternative formulation of the TPS time series, called

offsets, where 𝑞𝑖 = tps(𝑥𝑖 , 𝑥𝑖−1) (chord offset distance).

For DTW, LCSS and Soft DTW, two types of constraints were also

tested: Sakoe-Chiba and Itakura. Analogously to Sakoe-Chiba, the

Itakura constraint sets a maximum distance for each point in the

time series, making the algorithm more efficient, and reducing the

risk of being trapped in local minima. Several parameter settings for

the Sakoe-Chiba radius and Itakura band were tested, and the best

results were obtained by setting them to 5 and 4, respectively. This

parametrisation turned out to be optimal across all our experiments.

Each method was tested on sequences of original length (no-
stretch) and after resampling to the shortest sequence. We also

experimented with normalised time series (Section 3.3).

Dataset. We two subsets of ChoCo [16] containing cover tracks:

SchubertWinterreise [69] andChordify Annotator Subjectivity Dataset
(CASD) [38]. The former provides harmonic annotations for each of

the 9 different performances of the same musical piece by Schubert.

Similarly, CASD contains four annotations of the same performance,

contributed by four different annotators. Chords from Isophonics
Dataset [45] and Jazz Audio-Aligned Harmony (JAAH) [25] are
also added to the reference dataset in order to add heterogeneity

(different genres) and increase the complexity of the task.

Results. Table 1 shows the results of this comparison and high-

lights the best performing algorithms. Results are presented for

Schubert and CASD separately, and also in a third merged setup

(Schubert+CASD). Notably, the performance of the DTW algo-

rithm is significantly better for Schubert (one piece, multiple perfor-

mances), while for CASD (one performance, multiple annotations),

TPSD performs slightly better. The best results for the third setup

are obtained using the Sakoe-Chiba DTW, using normalisation and

resampling on the shortest sequence. It is also worth remarking

that our implementation, besides being the most accurate overall,

is also the most efficient approach, due to its linear complexity.

4.2 Structural coverage of known patterns
To validate our harmonic segmentation (Section 3.2), we measure

the overlap between the resulting structures with a collection of

well-known chordal patterns. This exemplifies the hypothesis that

a good segmentation would maximise the “reuse” of harmonic

patterns – as building blocks that can be found in other pieces.

Given a segmentation q̄ = q̄1, . . . , q̄𝑃 of a piece, with each q̄𝑖

containing a TPS time series, the overlap of q̄ with a dataset of

known harmonic patterns P is computed as:

𝑜𝑀 (q̄) = 1

𝑇

𝑇∑︁
𝑖=1

min

p∈P
𝑑DTW (q̄𝑖 , p), (6)

𝑜𝐵 (q̄) = min

q̄𝑖 ∈q̄
min

p∈P
𝑑DTW (q̄𝑖 , p), (7)

which differ in the aggregation function. The former measures

the average pattern distance contributed by each structure in the

segmentation; the latter, instead, only retains the distance of the

most similar pattern that was matched to one of the structures.

When 𝑜𝑀 = 0, all segments are fully matched/found in P; whereas

𝑜𝑀 is minimal when at least a segment matches a pattern in P.

Methods. We compare our method (denoted as harmov) to fast

low-cost unipotent semantic segmentation (FLUSS) [29] – a state of

the art algorithm for time series segmentation defined on theMatrix
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Figure 4: Structural coverage of known patterns for each segmentation method, using Equation 4 (left), and Equation 5 (right).
Results are reported as distances averaged per pattern group (a group contains known harmonic patterns of the same length).

Profile [70]. FLUSS annotates the time series with information

about the likelihood of a regime change (a segment boundary);

and is parameterised by a fixed window size𝑚, and the number

of segments to detect 𝑟 . We also include a baseline splitting a time

series in 𝑟 uniform segments. Both methods operates on the TPS

Profile of h, and are optimised via grid search.

Datasets. We compute and evaluate the harmonic segmenta-

tions on a dataset comprising 320 chord progressions, obtained

from randomly sampling 40 pieces per audio partition in ChoCo

(isophonics, billboard, casd, schubert-winterreise, rwc-pop,
uspop-2002, jaah, robbie-williams). This yields a diversified

(several genres, durations, etc.) yet representative sample of Har-

mory (≈ 2% of ChoCo); which prevents larger partitions from bi-

asing the overall results. For P, we assembled a dataset of known

harmonic patterns from Impro-Visor [57], which is available on

GitHub
5
. After filtration of trivial occurrences (e.g. chord uni-grams,

sequences with repeated chord occurrences, etc.), the dataset counts

300 unique patterns spanning from 3 to 10 chord occurrences per

pattern (the length of a chordal pattern).

Results. The structural coverage, computed for each segmen-

tation method and aggregated for all known harmonic patterns of

the same length, is reported in Figure 4. For both measures 𝑜𝑀 , 𝑜𝐵 ,

the segmentations produced by our method (harmov) produce the
lowest distances – meaning that they show the highest overlap with

the known harmonic patterns in P. This behaviour is preserved for

all pattern groups (the x-axis), and the gap with the other methods

increases with pattern’s length. The second performing method

is FLUSS, using 𝑟 = 14 split regions and a window size of𝑚 = 3.

However, for longer patterns, the latter performs comparably with

a fixed sequence split (the other baseline). Finally, it is worth re-

marking that results for all baselines are first optimised on a grid

search; whereas we use the default parameterisation for harmov.

5 AVENUES FOR MACHINE CREATIVITY
We envisage various applications of Harmory across different tasks

and use cases, ranging from music information retrieval and com-

putational musicology, to creativity support for artistic workflows.

The latter is the main focus of this work. However, we do not aim

5
https://github.com/Impro-Visor/Impro-Visor

at improving the state of the art in music generation, but rather to

provide a transparent system to support creative workflows [11].

Here, we show examples of trustworthy applications for pat-

tern discovery, human-machine chord generation, and harmonic

similarity. The latter is more of musicological interest, whereas

the former are both creative use cases. Each application is demon-

strated through a set of Prompts, expressed in natural language,

which correspond to SPARQL query templates to interrogate the

KG (Section 3). The latter are fully available on our repository
6
.

5.1 Pattern discovery
The traversal of the Harmonic Memory makes it possible to obtain

granular information of the harmonic structure of songs. In partic-

ular, it possible to explore the harmonic segments of each song, the

patterns related to each segment, and the similarities with other

patterns/segments found in other pieces.

A composer may start with a harmonic pattern mind, and initiate

a creative exploration of the KG by leveraging music and metadata.

Prompt 1 For a given pattern, which are the tracks (titles, artists
and genres) in which the pattern can be found?

Prompt 2 Given a music genre, what are the most frequent patterns?

To support creative exploration, more complex prompts can be

formulated in order to narrow down the search, and eventually

discover surprising or unexpected outputs, if present.

Prompt 3 Which harmonic patterns are used in “Michelle” by The
Beatles, but also in a classical composition?

Prompt 4 Which patterns used by The Beatles in “Michelle” but not
in “Hey Jude” contain at least a B flat major seventh chord?

In the Harmory KG, we have included known patterns (as de-

scribed in Section 4.2), which are labelled in such a way as to

indicate their origin, mood, or harmonic function within the pro-

gression. These labelled harmonic fragments can be used as input

for a query, e.g. for searching songs that contain them:

Prompt 5 Which tracks include a dominant cycle in seven steps?

6
SPARQL queries: https://github.com/smashub/harmory/tree/main/queries

https://github.com/Impro-Visor/Impro-Visor
https://github.com/smashub/harmory/tree/main/queries
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Figure 5: Example of a generated chord progression using a pattern-based prompt. Given a first segment, each segment is
chosen according to similarity to the subsequent one in the original sequence, and filtered according to arbitrary criteria. The
second segment is taken from a song that has “hip-hop” as genre, while the next two segments are chosen by artist.

5.2 Human-machine chord generation
Harmory also enables combinational creativity use cases. New pro-

gressions are generated by moving across patterns through tempo-

ral and similarity links, based on the given creative requirements.

At generation time, this has the advantage of giving recognition to

all artists that contributed to the new creation, as shown in Figure 5.

First, it can provide statistical information regarding variations

of a given harmonic sequence. As these variations come from real

pieces, it is also possible to leverage metadata for controlling the

generation. To do this, a prompt can be formulated from a given

(possibly new) harmonic sequence (or a part of it), to retrieve all

the all harmonic sequences using the same pattern.

Prompt 6 Given a chord sequence, which are its variations, and
which tracks these variations belong to?

Similarly, it is also possible to query the most similar (or most

distant) harmonic sequences to a given one:

Prompt 7 Given a chord sequence, which are its most similar chord
sequences, sorted by similarity?

These simple constructs already allow to generate new harmonic

sequences, starting from either a known harmonic idea/pattern,

or a full progression. If starting from a full progression, one way

is to identify the first harmonic segment that makes it up. From

this point, transitions can be made using similarity relations, while
taking into account the order of the different segments (temporal
connections) and their tonality. For example, starting from the first

harmonic segment of a song (a priming sequence), one can then

generate a continuation by identifying similar sequences to the next

sequence, filtering them by tonality (or/and by artist, genre, title)

and repeat this process recursively for a number of steps, criteria,

or with the supervision/control of the user.

Prompt 8 Create a progression starting with “Michelle” by The Bea-
tles, continuing with a segment found in a classical piece of
music, and then continuing with another by Chet Baker.

5.3 Harmonic similarity
From a musicological perspective, the KG can also be used to anal-

yse similarity relations between tracks – by leveraging the local

information relating harmonic structures. This also allows for the

formal definition of similarity functions (depending on a genre- or

task- specific notions) by using logical operators (SPARQL syntax)

over harmonic segments/patterns. An example is given below.

Prompt 9 Given a track, which tracks contain patterns with a dis-
tance of less than 0.2, each having the same order?

As expected, the results of this query are almost exclusively cover

songs of the given track. Nevertheless, a similarity function can be

defined to be less strict, and hence more explorative. For instance,

the similarity function below uses a higher similarity threshold for

patterns, and does not constrain on the order of segments.

Prompt 10 Given a track, which tracks contain patterns with a dis-
tance of less than 0.5, regardless of their order?

6 CONCLUSIONS
Our work contributes a Web resource aimed to support the design

of trustworthy systems for computational music creativity. This is

a central requirement for the large scale adoption of these systems,

which is often neglected in generative machine learning research.

To this vision, we leverage a corpus of harmonic annotations on the

Web, to design the Harmonic Memory (Harmory) – a Knowledge

Graph of interconnected chordal patterns which is perceptually

and musicologically grounded. After demonstrating the validity of

our framework, we showed how Harmony can enable transparent,

explainable, and accountable applications for human-machine cre-

ativity – ranging from pattern discovery and chord generation, to

harmonic similarity. Future work includes linking Web resources

with musical pieces in Harmory, to achieve the alignment to other

ontologies and Knowledge Graphs in the music domain. We also

envisage the inclusion of heterogeneous data to enrich and com-

plement the harmonic information, such as perceptual metadata,

musical content (melodies), and complexity measures.

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-

zon 2020 research and innovation programme under grant agree-

ment No 101004746.



The Harmonic Memory WWW ’23, April 30-May 4, 2023, Austin, TX, USA

REFERENCES
[1] Eytan Agmon. 1995. Functional Harmony Revisited: A Prototype-Theoretic

Approach. Music Theory Spectrum, 17, 2, (Oct. 1995), 196–214. eprint: https:

//academic.oup.com/mts/article-pdf /17/2/196/6138625/17-2-196.pdf. doi:

10.2307/745871.

[2] Andrea Agostinelli et al. 2023. Musiclm: generating music from text. CoRR,
abs/2301.11325. doi: 10.48550/arXiv.2301.11325.

[3] Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio

Mesa, Yurai Núñez Rodrıéguez, David Rappaport, and Godfried T. Toussaint.

2006. Algorithms for Computing Geometric Measures of Melodic Similarity.

Comput. Music. J., 30, 3, 67–76. doi: 10.1162/comj.2006.30.3.67.

[4] Margaret A Boden. 2004. The creative mind: Myths and mechanisms. Routledge.
[5] Margaret A Boden. 1992. Understanding creativity. The Journal of Creative

Behavior.
[6] Paul M. Bodily and Dan Ventura. 2018. Explainability: An Aesthetic for Aesthet-

ics in Computational Creative Systems. In Proceedings of the Ninth International
Conference on Computational Creativity, ICCC 2018, Salamanca, Spain, June 25-
29, 2018. François Pachet, Anna Jordanous, and Carlos León, (Eds.) Association

for Computational Creativity (ACC), 153–160. http://computationalcreativity.n

et/iccc2018/sites/default/files/papers/ICCC%5C_2018%5C_paper%5C_42.pdf.

[7] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. 2020. Deep
learning techniques for music generation. Vol. 1. Springer.

[8] Nick Bryan-Kinns, Berker Banar, Corey Ford, C Reed, Yixiao Zhang, Simon

Colton, Jack Armitage, et al. 2022. Exploring xai for the arts: Explaining latent

space in generative music.

[9] Benjamin Burger et al. 2020. A mobile robotic chemist. Nature, 583, 7815, 237–
241.

[10] Valentina Anita Carriero, Fiorela Ciroku, Jacopo de Berardinis, Delfina Sol

Martinez Pandiani, Albert Meroño-Peñuela, Andrea Poltronieri, and Valentina

Presutti. 2021. Semantic Integration of MIR Datasets with the Polifonia Ontol-

ogy Network. In ISMIR Late Breaking Demo. (Nov. 2021).
[11] Shan Carter and Michael Nielsen. 2017. Using artificial intelligence to augment

human intelligence. Distill, 2, 12, e9.
[12] Nick Collins, V Ruzicka, and Mick Grierson. 2020. Remixing AIs: mind swaps,

hybrainity, and splicing musical models. In Proc. The Joint Conference on AI
Music Creativity.

[13] Simon Colton, John William Charnley, and Alison Pease. 2011. Computational

Creativity Theory: The FACE and IDEA Descriptive Models. In ICCC. Mexico

City, 90–95.

[14] Simon Colton and Dan Ventura. 2014. You can’t know my mind: A festival of

computational creativity. In Proceedings of the Fifth International Conference
on Computational Creativity, ICCC 2014, Ljubljana, Slovenia, June 10-13, 2014.
Simon Colton, Dan Ventura, Nada Lavrac, and Michael Cook, (Eds.) computa-

tionalcreativity.net, 351–354. http://computationalcreativity.net/iccc2014/wp-c

ontent/uploads/2014/06/15.8%5C_Colton.pdf.

[15] Marco Cuturi and Mathieu Blondel. 2017. Soft-DTW: a Differentiable Loss

Function for Time-Series. In Proceedings of the 34th International Conference on
Machine Learning (Proceedings of Machine Learning Research). Doina Precup

and Yee Whye Teh, (Eds.) Vol. 70. PMLR, (Aug. 2017), 894–903. https://proceed

ings.mlr.press/v70/cuturi17a.html.

[16] Jacopo de Berardinis, AlbertMeroño-Peñuela, Andrea Poltronieri, and Valentina

Presutti. 2023. ChoCo: a Chord Corpus and a Data Transformation Workflow

for Musical Harmony Knowledge Graphs. In Manuscript under review.
[17] Jacopo de Berardinis, Michalis Vamvakaris, Angelo Cangelosi, and Eduardo

Coutinho. 2020. Unveiling the hierarchical structure ofmusic bymulti-resolution

community detection. Transactions of the International Society for Music Infor-
mation Retrieval, 3, 1, 82–97.

[18] W. Bas de Haas, Remco C. Veltkamp, and Frans Wiering. 2008. Tonal Pitch

Step Distance: a Similarity Measure for Chord Progressions. In ISMIR 2008,
9th International Conference on Music Information Retrieval, Drexel University,
Philadelphia, PA, USA, September 14-18, 2008. Juan Pablo Bello, Elaine Chew,

and Douglas Turnbull, (Eds.), 51–56. http://ismir2008.ismir.net/papers/ISMIR2

008%5C_252.pdf.

[19] W. Bas de Haas, Frans Wiering, and Remco C. Veltkamp. 2013. A geometrical

distance measure for determining the similarity of musical harmony. Interna-
tional Journal of Multimedia Information Retrieval, 2, 3, (Sept. 2013), 189–202.
doi: 10.1007/s13735-013-0036-6.

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805.
[21] Prafulla Dhariwal, Heewoo Jun, Christine Payne, JongWook Kim, Alec Radford,

and Ilya Sutskever. 2020. Jukebox: a generative model for music. arXiv preprint
arXiv:2005.00341.

[22] Eric Drott. 2021. Copyright, compensation, and commons in the music AI

industry. Creative Industries Journal, 14, 2, 190–207.
[23] Wlodzislaw Duch. 2007. Intuition, insight, imagination and creativity. IEEE

Computational Intelligence Magazine, 2, 3, 40–52.

[24] M. du Sautoy. 2019. The Creativity Code: How AI is learning to write, paint and
think. HarperCollins Publishers. isbn: 9780008288167.

[25] Vsevolod Eremenko, Emir Demirel, Baris Bozkurt, and Xavier Serra. JAAH:

Audio-aligned jazz harmony dataset. Version v0.1. Zenodo, (June 2018). doi:

10.5281/zenodo.1290737.

[26] Luciano Floridi. 2019. Establishing the rules for building trustworthy ai. Nature
Machine Intelligence, 1, 6, 261–262.

[27] Jonathan Foote. 1999. Visualizing music and audio using self-similarity. In

Proceedings of the seventh ACM international conference on Multimedia (Part 1),
77–80.

[28] Aldo Gangemi and Peter Mika. 2003. Understanding the Semantic Web through

Descriptions and Situations. In On The Move to Meaningful Internet Systems
2003: CoopIS, DOA, and ODBASE. Robert Meersman, Zahir Tari, and Douglas C.

Schmidt, (Eds.) Springer Berlin Heidelberg, Berlin, Heidelberg, 689–706. isbn:

978-3-540-39964-3.

[29] Shaghayegh Gharghabi, Yifei Ding, Chin-Chia Michael Yeh, Kaveh Kamgar,

Liudmila Ulanova, and Eamonn Keogh. 2017. Matrix profile VIII: domain ag-

nostic online semantic segmentation at superhuman performance levels. In

2017 IEEE international conference on data mining (ICDM). IEEE, 117–126.
[30] Zixun Guo, Jaeyong Kang, and Dorien Herremans. 2022. A Domain-Knowledge-

Inspired Music Embedding Space and a Novel Attention Mechanism for Sym-

bolic Music Modeling. arXiv preprint arXiv:2212.00973.
[31] Christopher Harte, Mark B Sandler, Samer A Abdallah, and Emilia Gómez.

2005. Symbolic representation of musical chords: a proposed syntax for text

annotations. In ISMIR. Vol. 5, 66–71.
[32] Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron C. Courville,

and Douglas Eck. 2017. Counterpoint by convolution. In Proceedings of the
18th International Society for Music Information Retrieval Conference, ISMIR
2017, Suzhou, China, October 23-27, 2017. Sally Jo Cunningham, Zhiyao Duan,

Xiao Hu, and Douglas Turnbull, (Eds.), 211–218.

[33] Cheng-Zhi Anna Huang, Hendrik Vincent Koops, Ed Newton-Rex, Monica

Dinculescu, and Carrie J Cai. 2020. AI song contest: Human-AI co-creation in

songwriting. arXiv preprint arXiv:2010.05388.
[34] Cheng-Zhi AnnaHuang et al. 2018.Music transformer. arXiv preprint arXiv:1809.04281.
[35] Jaehun Kim, Julián Urbano, Cynthia Liem, and Alan Hanjalic. 2020. One Deep

Music Representation to Rule Them All?: A Comparative Analysis of Different

Representation Learning Strategies. Neural Computing and Applications, 32, 4,
1067–1093.

[36] Arto Klami, Theodoros Damoulas, Ola Engkvist, Patrick Rinke, and Samuel

Kaski. 2022. Virtual Laboratories: Transforming research with AI.

[37] Stefan Koelsch. 2011. Toward a neural basis of music perception–a review and

updated model. Frontier in Psychology, 2, 110.
[38] Hendrik Vincent Koops,W. Bas deHaas, JohnAshley Burgoyne, Jeroen Bransen,

Anna Kent-Muller, and Anja Volk. 2019. Annotator subjectivity in harmony

annotations of popular music. Journal of New Music Research, 48, 3, 232–252.
doi: 10.1080/09298215.2019.1613436.

[39] Allison Lahnala, Gauri Kambhatla, Jiajun Peng, Matthew Whitehead, Gillian

Minnehan, Eric Guldan, Jonathan K. Kummerfeld, Anil Çamci, and Rada Mi-

halcea. 2021. Chord Embeddings: Analyzing What They Capture and Their

Role for Next Chord Prediction and Artist Attribute Prediction. In Artificial
Intelligence in Music, Sound, Art and Design - 10th International Conference,
EvoMUSART 2021, Held as Part of EvoStar 2021, Virtual Event, April 7-9, 2021,
Proceedings (Lecture Notes in Computer Science). Juan Romero, Tiago Martins,

and Nereida Rodrıéguez-Fernández, (Eds.) Vol. 12693. Springer, 171–186. doi:

10.1007/978-3-030-72914-1\_12.

[40] Agnieszka Lawrynowicz. 2020. Creative ai: a new avenue for the Semantic

Web? Semantic Web, 11, 69–78. 1. doi: 10.3233/SW-190377.

[41] Nicolas Lazzari, Andrea Poltronieri, and Valentina Presutti. 2022. Pitchclass2vec:

Symbolic Music Structure Segmentation with Chord Embeddings. In Proceed-
ings of the 1st Workshop on Artificial Intelligence and Creativity co-located
with 21th International Conference of the Italian Association for Artificial In-
telligence(AIxIA 2022), Udine, Italy, November 28 - December 3, 2022 (CEUR

Workshop Proceedings). Allegra De Filippo, Michela Milano, Valentina Pre-

sutti, and Alessandro Saffiotti, (Eds.) Vol. 3278. CEUR-WS.org, 14–30. http://ce

ur-ws.org/Vol-3278/paper2.pdf.

[42] Fred Lerdahl. 1988. Tonal Pitch Space. Music Perception: An Interdisciplinary
Journal, 5, 3, 315–349. Retrieved Feb. 6, 2023 from http://www.jstor.org/stable

/40285402.

[43] Fred Lerdahl and Ray Jackendoff. 1983. A generative theory of tonal music. The
MIT Press, Cambridge. MA. isbn: 0262120941.

[44] Maria Teresa Llano, Mark d’Inverno, Matthew Yee-King, Jon McCormack, Alon

Ilsar, Alison Pease, and Simon Colton. 2020. Explainable Computational Cre-

ativity. In Proceedings of the Eleventh International Conference on Computational
Creativity, ICCC 2020, Coimbra, Portugal, September 7-11, 2020. F. Amıélcar

Cardoso, Penousal Machado, Tony Veale, and João Miguel Cunha, (Eds.) Asso-

ciation for Computational Creativity (ACC), 334–341. http://computationalcre

ativity.net/iccc20/papers/067-iccc20.pdf.

https://academic.oup.com/mts/article-pdf/17/2/196/6138625/17-2-196.pdf
https://academic.oup.com/mts/article-pdf/17/2/196/6138625/17-2-196.pdf
https://doi.org/10.2307/745871
https://doi.org/10.48550/arXiv.2301.11325
https://doi.org/10.1162/comj.2006.30.3.67
http://computationalcreativity.net/iccc2018/sites/default/files/papers/ICCC%5C_2018%5C_paper%5C_42.pdf
http://computationalcreativity.net/iccc2018/sites/default/files/papers/ICCC%5C_2018%5C_paper%5C_42.pdf
http://computationalcreativity.net/iccc2014/wp-content/uploads/2014/06/15.8%5C_Colton.pdf
http://computationalcreativity.net/iccc2014/wp-content/uploads/2014/06/15.8%5C_Colton.pdf
https://proceedings.mlr.press/v70/cuturi17a.html
https://proceedings.mlr.press/v70/cuturi17a.html
http://ismir2008.ismir.net/papers/ISMIR2008%5C_252.pdf
http://ismir2008.ismir.net/papers/ISMIR2008%5C_252.pdf
https://doi.org/10.1007/s13735-013-0036-6
https://doi.org/10.5281/zenodo.1290737
https://doi.org/10.1080/09298215.2019.1613436
https://doi.org/10.1007/978-3-030-72914-1\_12
https://doi.org/10.3233/SW-190377
http://ceur-ws.org/Vol-3278/paper2.pdf
http://ceur-ws.org/Vol-3278/paper2.pdf
http://www.jstor.org/stable/40285402
http://www.jstor.org/stable/40285402
http://computationalcreativity.net/iccc20/papers/067-iccc20.pdf
http://computationalcreativity.net/iccc20/papers/067-iccc20.pdf


WWW ’23, April 30-May 4, 2023, Austin, TX, USA de Berardinis et al.

[45] Matthias Mauch, Simon Dixon, Christopher Harte, et al. 2007. Discovering

chord idioms through Beatles and Real Book songs. (2007).

[46] Rick Meerwaldt, Albert Meroño-Peñuela, and Stefan Schlobach. 2017. Mixing

Music as Linked Data: SPARQL-based MIDI Mashups. InWHiSe@ ISWC, 87–98.
[47] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

Estimation of Word Representations in Vector Space. In 1st International Con-
ference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings. Yoshua Bengio and Yann LeCun, (Eds.)

http://arxiv.org/abs/1301.3781.

[48] Fabio Morreale. 2021. Where does the buck stop? ethical and political issues

with ai in music creation. Transactions of the International Society for Music
Information Retrieval, (July 2021).

[49] Lindasalwa Muda, Mumtaj Begam, and I. Elamvazuthi. 2010. Voice Recognition

Algorithms using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic

Time Warping (DTW) Techniques. CoRR, abs/1003.4083. http://dblp.uni-trier.d
e/db/journals/corr/corr1003.html#abs-1003-4083.

[50] Meinard Müller. 2021. Fundamentals of music processing: Using Python and
Jupyter notebooks. Vol. 2. Springer.

[51] Oriol Nieto and Juan Pablo Bello. 2016. Systematic Exploration of Computa-

tional Music Structure Research. In Proceedings of the 17th International Society
for Music Information Retrieval Conference (New York City, United States). IS-

MIR, New York City, United States, (Aug. 2016), 547–553. doi: 10.5281/zenodo

.1417661.

[52] Long Ouyang et al. 2022. Training language models to follow instructions with

human feedback. arXiv preprint arXiv:2203.02155.
[53] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:

Global Vectors for Word Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL.
Alessandro Moschitti, Bo Pang, and Walter Daelemans, (Eds.) ACL, 1532–1543.

doi: 10.3115/v1/d14-1162.

[54] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word

Representations. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers). Association for Computational Linguistics,

New Orleans, Louisiana, (June 2018), 2227–2237. doi: 10.18653/v1/N18-1202.

[55] Azzurra Pini, Jer Hayes, Connor Upton, and Medb Corcoran. 2019. AI Inspired

Recipes: Designing Computationally Creative Food Combos. In Extended Ab-
stracts of the 2019 CHI Conference on Human Factors in Computing Systems (CHI
EA ’19). Association for Computing Machinery, Glasgow, Scotland Uk, 1–6.

isbn: 9781450359719. doi: 10.1145/3290607.3312948.

[56] Valentina Presutti, Enrico Daga, Aldo Gangemi, and Eva Blomqvist. 2009.

eXtreme Design with Content Ontology Design Patterns. In Proceedings of the
Workshop on Ontology Patterns (WOP 2009) , collocated with the 8th International
Semantic Web Conference ( ISWC-2009 ), Washington D.C., USA, 25 October,
2009 (CEUR Workshop Proceedings). Eva Blomqvist, Kurt Sandkuhl, François

Scharffe, and Vojtech Svátek, (Eds.) Vol. 516. CEUR-WS.org. http://ceur-ws.org

/Vol-516/pap21.pdf.

[57] Alexander M Putman and Robert M Keller. 2015. A transformational grammar

framework for improvisation. In First International Conference on New Music
Concepts.

[58] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec

Radford, Mark Chen, and Ilya Sutskever. 2021. Zero-shot text-to-image genera-

tion. In International Conference on Machine Learning. PMLR, 8821–8831.

[59] Yves Raymond, Samer Abdallah, Mark Sandler, and Frederick Giasson. 2007.

The Music Ontology. In Proceedings of the 8th International Conference on Music
Information Retrieval (ISMIR 2007). Vienna, Austria, (Sept. 2007), 417–422.

[60] Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck.

2018. A hierarchical latent vector model for learning long-term structure in

music. In International conference on machine learning. PMLR, 4364–4373.

[61] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. 2022. High-resolution image synthesis with latent diffusion models.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 10684–10695.

[62] Amaia Salvador, Michal Drozdzal, Xavier Giró-i-Nieto, and Adriana Romero.

2019. Inverse cooking: Recipe generation from food images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10453–
10462.

[63] KC Santosh, Bart Lamiroy, and Laurent Wendling. 2013. DTW–Radon-based

shape descriptor for pattern recognition. International Journal of Pattern Recog-
nition and Artificial Intelligence, 27, 03, 1350008.

[64] Bob Sturm, Joao Felipe Santos, and Iryna Korshunova. 2015. Folk music style

modelling by recurrent neural networks with long short term memory units.

In 16th international society for music information retrieval conference.
[65] Bob LT Sturm, Maria Iglesias, Oded Ben-Tal, Marius Miron, and Emilia Gómez.

2019. Artificial intelligence and music: open questions of copyright law and

engineering praxis. In Arts number 3. Vol. 8. MDPI, 115.

[66] Iiris Sundin, Alexey Voronov, Haoping Xiao, Kostas Papadopoulos, Esben

Jannik Bjerrum, Markus Heinonen, Atanas Patronov, Samuel Kaski, and Ola

Engkvist. 2022. Human-in-the-loop assisted de novo molecular design. Journal
of Cheminformatics, 14, 1, 1–16.

[67] Peter M Todd and Gregory M Werner. 1999. Frankensteinian methods for evo-

lutionary music composition. Musical networks: Parallel distributed perception
and performance, 3, 4, 7.

[68] M. Vlachos, G. Kollios, and D. Gunopulos. 2002. Discovering similar multidi-

mensional trajectories. In Proceedings 18th International Conference on Data
Engineering, 673–684. doi: 10.1109/ICDE.2002.994784.

[69] Christof Weiß, Frank Zalkow, Vlora Arifi-Müller, Meinard Müller, Hendrik

Vincent Koops, Anja Volk, and Harald G Grohganz. 2021. Schubert Winterreise

dataset: A multimodal scenario for music analysis. Journal on Computing and
Cultural Heritage (JOCCH), 14, 2, 1–18.

[70] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei

Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn

Keogh. 2016. Matrix profile I: all pairs similarity joins for time series: a unifying

view that includes motifs, discords and shapelets. In 2016 IEEE 16th international
conference on data mining (ICDM). Ieee, 1317–1322.

[71] Yuan Yuan, Yi-Ping Phoebe Chen, Shengyu Ni, Augix Guohua Xu, Lin Tang,

Martin Vingron, Mehmet Somel, and Philipp Khaitovich. 2011. Development

and application of a modified dynamic time warping algorithm (DTW-S) to

analyses of primate brain expression time series. BMC bioinformatics, 12, 1–13.

http://arxiv.org/abs/1301.3781
http://dblp.uni-trier.de/db/journals/corr/corr1003.html#abs-1003-4083
http://dblp.uni-trier.de/db/journals/corr/corr1003.html#abs-1003-4083
https://doi.org/10.5281/zenodo.1417661
https://doi.org/10.5281/zenodo.1417661
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1145/3290607.3312948
http://ceur-ws.org/Vol-516/pap21.pdf
http://ceur-ws.org/Vol-516/pap21.pdf
https://doi.org/10.1109/ICDE.2002.994784

	Abstract
	1 Introduction
	1.1 Fundamental concerns of music AI systems
	1.2 Our contribution

	2 Related work
	3 Harmory: the Harmonic Memory
	3.1 Encoding chords in the Tonal Pitch Space
	3.2 Novelty-based harmonic segmentation
	3.3 Linking harmonic segments via similarity
	3.4 Knowledge graph creation

	4 Experiments
	4.1 Evaluation of harmonic similarity
	4.2 Structural coverage of known patterns

	5 Avenues for machine creativity
	5.1 Pattern discovery
	5.2 Human-machine chord generation
	5.3 Harmonic similarity

	6 Conclusions

