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ABSTRACT
Web vocabularies (WV) have become a fundamental tool for struc-
turing Web data: over 10 million sites use some structured data
format to markup content, and an ever-growing number of ontolo-
gies are used to specify types and relations in billions of Knowledge
Graph statements. Maintaining these vocabularies, and keeping up
with their changes, are manual tasks with very limited automated
support. Publishers invest significant labour in updating them to fit
new content; while users need the latest version to update their data
markup. Recent work shows that machine learning can be used to
reliably predict vocabulary changes, but these depend on the spe-
cific application domain (e.g. biomedicine), and do not explain what
aspects of changes (e.g. their type, frequency, etc.) have an impact
in their prediction. In this paper, we describe a framework that uses
multiple supervised learning models to learn and predict changes
in versioned vocabularies, independent of their domain. Using well-
established results in ontology evolution we extract domain-agnostic
and human-interpretable features and explain their influence on
change predictability. Applying our method on 139 WV from 9 dif-
ferent domains, we find that ontology structural and instance data,
the number of versions, and the release frequency highly correlate
with predictability of change. These results can pave the way towards
integrating predictive models into knowledge engineering practices
and methods, supporting publishers and consumers in proactively
versioning vocabularies and updating datasets.

1 INTRODUCTION
Increasingly, the Web contains more and more structured data de-
scribing people, organizations, locations, and products, using stan-
dards such as RDF, Microdata, JSON-LD, RDFa, and Microformats
[22]. Structured vocabularies [12], SKOS taxonomies [21] and OWL
ontologies [19] play a crucial role in this process as they provide
terminologies to describe such domains in Knowledge Graphs, for-
malizing the semantics of multiple domains, and extending inter-
operability. Concepts are central entities in these vocabularies, and
represent objects with common characteristics. However, as more
and more data populate the Web and its services, these concepts are
continuously subject to change. Consequently, Web vocabularies
(WV) need to change in new versions and adapt to the new reali-
ties. Schema.org [12] and DBpedia [18], e.g., model cross-domain
knowledge and are updated every 1-2 months1. The Historical In-
ternational Standard Classification of Occupations (HISCO) [17] is

1https://schema.org/docs/releases.html

a taxonomy of historical occupations since the 16th century perma-
nently accepts additions from its users. The Gene Ontology (GO)
[6] standardizes the representation of gene attributes across species
and datasets and publishes new releases monthly. These updates are
generally a manual, unassisted, and knowledge intensive task. To
adapt their vocabularies to domain changes, data publishers typically
use their expert knowledge to produce new vocabulary versions.
This creates vocabulary version chains: subsequent unique states
of a vocabulary with unique identifiers. These version chains exac-
erbate the manual vocabulary management practices of publishers,
who face hard questions on what parts of their vocabulary needs
attention; and users, who are faced with questions on what version
to use and whether the wrong version will make them loose features.
The automatic detection of concept change and shift in meaning
would be a great aid in proactively supporting vocabulary publishers
and users in these challenges.

In previous work, Pesquita and Couto [26] show that feature en-
gineering [29] can be effective for predicting class enrichment of
biomedical OBO/OWL ontologies. González and Hogan [11] intro-
duce a new algebra over characteristic sets, and use it in eleven
weeks of Wikidata snapshots to predict future changes. However,
these methods have two important pitfalls. First, they have been
evaluated in only one application domain; questions about their
generality and domain independence remain open. Second, they pro-
vide no explanations for ensuring good predictability of vocabulary
change; e.g., how often versions need to be released, what types of
changes have a deeper impact in change predictability, etc. Therefore,
our interest is to investigate a more generic approach for predicting
when and where a Web vocabulary of any domain will change; and
to explain what specific features make vocabulary changes more
predictable. We build on ([26, 29, 34]) and propose a generic vocab-
ulary change prediction framework based on feature extraction and
supervised learning on past versions of Linked Datasets. This frame-
work predicts change in arbitrary schemas (vocabularies, taxonomies,
ontologies) in RDF graphs in a domain-independent manner; and
offers human-understandable explanations for such changes through
human-interpretable features and feature ranking algorithms. Our
research questions are:

RQ1. To what extent can we use past versions to predict concept
change in WV independently of the domain of application?

RQ2. What per-version features in past vocabulary versions have a
greater influence on predicting concept change in WV?

RQ3. What per-chain features in past vocabulary versions have a
greater influence on predicting concept change in WV?
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In order to address these, we apply our proposed framework to 139
different Web vocabulary version chains in RDF, including the Dutch
historical censuses [20], the DBpedia ontology [18], vocabularies
from SPARQL endpoints in the Linked Data cloud [33], and Linked
Open Vocabularies used all over the Web. We obtain solid evaluation
performances, with F-measures of 0.84, 0.93 and 0.79 on test data.
We explain the datasets in which our approach works best, and find
that features such as dataset size, the number of versions in the
chain, the time gap between each version or the tree-depth of their
hierarchies have an influence in the quality of the predictive models.
Therefore, our contributions are:

• A domain-independent and reusable framework for learning
and predicting concept change in vocabulary version chains;
based on combining, integrating, and leveraging various ex-
isting machine learning building blocks.

• To the best of our knowledge, the largest and most compre-
hensive collection of features explaining vocabulary change
on a per-version and per-chain vocabulary basis, along with
tools to compute them. We show that human-engineered fea-
tures combined with feature selection [15] are very effective
in addressing explainability of vocabulary change models
learned from data.

• A large scale, multi-domain evaluation of the performance
at learning and predicting ontology change in 139 versioned
ontologies from 9 different domains (e.g. academia, govern-
ment/organisations, geographic, cultural, etc.).

The rest of the paper is structured as follows. In Section 2, we
survey previous efforts addressing the problem of vocabulary change.
Section 3 describes our approach, pipeline and feature set. In Section
4 we present our evaluation, describing our datasets and experimental
setting. In Section 5 we show our results, and discuss them with
respect to our research questions, before we conclude in Section 6.

2 RELATED WORK
In Machine Learning, changes in the domain are related with the
phenomenon of concept drift [9], which occurs when “the concept
of interest may depend on some hidden context, not given explicitly
in the form of predictive features. (...) Changes in the hidden context
can induce more or less radical changes in the target concept, which
is generally known as concept drift” [31]. Multiple concept drift
detection methods exist [9]. Similarly for ontologies, SemaDrift is
a framework for calculating semantic drift in ontologies [28]. The
authors define various related terms such as semantic drift, change,
and decay but also concept change and drift, a "transformation
of meaning of ontology’s underlying concepts between versions"
[28]. Further, OntoDrift [4] extends the ideas and implementation
of SemaDrift, by considering more aspects of a context. They also
account for additions of new concepts and removal of old ones,
by adding the Jaccard Index to their drift measure [4]. Although
effective for computing pair-wise drifts, SemaDrift and OntoDrift
are heuristic-based and therefore do not scale well to large datasets.

In the Semantic Web, changes in concepts can be studied through
formal differences between ontologies in Description Logics [10].
[7] propose a method based on clustering similar instances to de-
tect concept change. [13] focus on semantic drift definition based

on concept signatures within ontologies. The related field of on-
tology evolution deals with “the timely adaptation of an ontology
and consistent propagation of changes to dependent artifacts” [1].
Accordingly, change is only a step in the evolution process, although
the definition of the goal of ontology change (“deciding the modifi-
cations to perform upon an ontology in response to a certain need
for change as well as the implementation of these modifications
and the management of their effects in depending data, services,
applications, agents or other elements” [8, 13, 16]) suggests that the
overlap between the two fields is considerable.

Predicting changes can also be seen as ontology forecasting, i.e.
predicting which new concepts are going to be added to the ontology
by only using past knowledge. For this purpose, [3] introduce the
Scientific Innovation Forecast (SIF) model. Their approach outper-
forms known baselines when forecasting over 5 years. The field of
graph completion and link prediction is also related [2]. However,
we do not aim at predicting new concepts or links, but rather to pre-
dict where changes are going to occur within an ontology, to already
present concepts. Gonzalez et al. [11] define an algebra using charac-
teristic sets, which they use on a change learning and prediction task.
They apply it to eleven weeks of data from Wikidata, by converting
it to characteristic sets and using diffs between versions to predict
the following changes. However, they do not use version chains and
the additional step of conversion makes it hardly comparable to ver-
sioned, human-engineered ontologies. [24] introduce a new strategy
for updating RDF links by predicting triple-level changes, and using
this predictions to identify what RDF documents to update. However,
their focus is not on the change prediction but rather on the update
which follows. Robust learning algorithms in ontology streams with
semantic drift have also been investigated [5, 25]; however, graph
streams demand a much higher update frequency than the classic
ontology versions we study here.

In the closest work to ours [26], authors propose a method based
on supervised learning on past ontology versions to predict enrich-
ment of classes of biomedical ontologies. Models of change are
learned from data, and features are engineered according to the
guidelines described in [29]. [29] shows evidence that good vocab-
ulary change predictors are generally related to (a) the structure of
classes, subclasses and properties in an ontology; (b) the instances
belonging to them; and (c) the usage of classes, properties and in-
stances in applications. Together with the definitions of concept
change described in [34], [26] and [29] provide an ideal framework
for studying the effectiveness of supervised learning for Web vocab-
ulary change. On the one hand, these methods have not been applied
in various application domains, questioning their generality; and
provide no explanations nor recommendations for good prediction
results, e.g., how often versions need to be released, what changes
have deeper impacts, etc. This paper addresses these pitfalls.

3 APPROACH
Our proposal builds on previous work in ontology evolution [29], su-
pervised learning for ontology extension prediction [26], and concept
drift detection [34]. We propose a supervised learning framework
that generalizes the approach in [26], empirically extends and con-
cretizes the features in [29], and automatically labels vocabulary
changes according to [34]. In [34], vocabulary changes are defined
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by considering the intension (i.e. definition of classes and relations),
extension (i.e. instances of those classes and relations), and labels
(i.e. their identifiers) of concepts/classes. The intension of a concept
𝐶 is the disjoint union of a rigid and a non-rigid set of properties
(𝑖𝑛𝑡𝑟 (𝐶) ∪ 𝑖𝑛𝑡𝑛𝑟 (𝐶)). Identity over time is addressed through rigid
intension equivalency, i.e. 𝑖𝑛𝑡𝑟 (𝐶1) = 𝑖𝑛𝑡𝑟 (𝐶2). Intension, exten-
sion, and label similarity functions 𝑠𝑖𝑚𝑖𝑛𝑡 , 𝑠𝑖𝑚𝑒𝑥𝑡 , 𝑠𝑖𝑚𝑙𝑎𝑏𝑒𝑙 ↦→ [0, 1]
quantify meaning similarity between identical concepts in different
versions of a vocabulary.

The task of change prediction can be defined as follows: given
an ordered set, or sequence, of versions of a vocabulary 𝑉 (with
or without instance data), where each version of 𝑉 is an updated
copy of a previous version with a new timestamp. Based on the
notion of identity as defined above, the task of change prediction is
to decide for a concept𝐶 in the most current version𝑉𝑛 whether𝐶 is
a candidate to be changed or not, and if so with what type of change
(intensional, extensional or label change as defined in [34]). The
notion of a "candidate to be changed" is a soft notion, mimicking the
expected behaviour of a Knowledge Engineer. In our experiments
we will use previous modelling behaviour to evaluate the quality of
our prediction with respect to unseen, future changes.

More specifically, our framework includes: (a) an abstraction
of the input parameters required for the learning process; (b) an
abstraction of features that apply not only to ontologies, but to other
Linked Datasets such as vocabularies and taxonomies; and (c) a
pre-learning optimization technique to merge features of identical
concepts between versions, into single training/test individuals.

3.1 Framework
Figure 1 shows the pipeline of our proposed framework. Taking
input {Feature generation parameters, change definition, version
chain, learning parameters}, the system returns output {Feature
selection, classifier performance}.

First, the Feature Generator (FG) generates 𝑘 training datasets
and one test dataset, according to the following input set elements:
(a) version chain containing 𝑁 versions of a vocabulary, in any
RDF serialization, where the change prediction is to be performed;
(b) several user-set feature generation parameters that control the
feature generation process (the ΔFC parameter, setting the version
to be used to decide if a concept of the training dataset has changed;
and the ΔTT parameter, setting the version to be used to decide if
a concept of the test dataset has changed); and (c) a customizable
definition of change that determines the value of the target variable.

In our approach, we use the framework of [34] to automatically
estimate change labels, using an ensemble of intension, extension,
and identifier changes. The last element of the input set, learning
parameters, is passed further to be used in a later stage. Once all
set, 𝑘 training datasets and the test dataset are built by the FG as
shown in Figure 2. The parameters 𝑁 , Δ𝐹𝐶 and Δ𝑇𝑇 are used to
determine which versions will play the role of {𝑉𝑡 }, 𝑉𝑟 and 𝑉𝑒 . {𝑉𝑡 }
is the set of training versions, which are used to build the training
dataset. 𝑉𝑟 is the reference version, against which all versions in
{𝑉𝑡 } are compared, using the definition of change provided as input,
to determine whether there is concept change or not. 𝑉𝑒 is the evalu-
ation version and is used to build the test dataset, following a similar
procedure as with {𝑉𝑡 } and𝑉𝑟 , this time comparing𝑉𝑟 with𝑉𝑒 .𝑉𝑒 is

set by default to the most recent version. While extracting features,
each concept is labelled depending on whether change is detected
between one version of the concept and the next, according to the
definitions of [34].

Since versions can only be compared pairwise, the FG produces 𝑘
training datasets. In order to preserve identity of learning instances,
the Identity Aggregator (IA) matches concepts in the 𝑘 training
datasets and merges their features into one individual, modifying the
dataset dimensionality accordingly. We use a simple instance-based
matching, based on string similarity of resource identifiers (URIs)
with a tolerance to namespace changes and minimal typing errors.
The training and test datasets are then passed through the Normal-
izer module (Norm), which adjusts value ranges, performs necessary
encoding to feature names and types by discarding outliers.

Then, we feed them into the Machine Learning Interface (MLI)
for the feature selection and classification tasks. Here, we build on
top of the machine learning algorithms and models provided by the
WEKA API [14], indicated by the dashed arrow in fig:pipeline. The
last element of the pipeline’s input set, learning parameters, allows
for domain-independent customization and contains: (a) a feature
selection algorithm (Relief [15]) to rank features; (b) a relevance
threshold 𝑡 to filter selected features; and (c) the list of classifiers
to be trained. The MLI runs the chosen feature selection algorithm,
it trains the chosen subset of machine learning classifiers, and it
evaluates the trained models.

3.2 Feature Set
We use two types of features, identifying locally and globally im-
portant features according to the literature [29] and experimental
datasets (Section 4.1). The first set are per-version features. These
features are calculated for every specific version in a version chain,
yielding multiple values, depending on how many versions there
are. The second are per-chain features, which characterise an en-
tire chain, not each version separately. They focus on changes and
average characteristics of the vocabularies. Table 1 summarizes all
the features in our approach. We propose sets of concept structural
features and membership features. Structural features measure the
location and the surrounding context of a concept in the schema,
such as children, siblings, depth of a concept (i.e. distance to the
leaves), etc. Since WV are graphs in general and may contain cycles,
these properties are defined with a 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ threshold that indi-
cates the maximum level at which the property will be calculated
(e.g. direct children, children at depth one, two, etc.).

4 EVALUATION
The source code implementing our proposed approach in Figure 1 is
available online.2 We apply our approach on 139 different vocabu-
laries, describe the properties of their version chains, the experiment
setup and the evaluation criteria. Our experiments are three-fold, to
answer our research questions (Section 1).

4.1 Datasets
We use the following 139 RDF vocabulary version chains:
• 1 version chain of the DBpedia ontology [18] (8 versions), with

community-curated classes and properties describing DBpedia
2Implementation and full results at http://goo.gl/rASX6S
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Figure 1: Pipeline of our approach. Arrows show the data flow through the modules.

ID Scope Description

dirChildren Per-version Number of directly connected concepts via skos:broader, rdfs:subClassOf, etc.
dirChildrenD Per-version I.d. with direct children at 0 ≤ 𝑑𝑒𝑝𝑡ℎ ≤𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ

parents Per-version Number of concepts this concept descends from
siblings Per-version Number of concepts that share parents with this concept
dirArticles Per-version Number of typed instances or user-defined membership properties linking the concept with an instance (e.g. rdf:type)
dirArticlesChildrenD Per-version I.d. with children at 0 ≤ 𝑑𝑒𝑝𝑡ℎ ≤𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ

ratioArticlesChildren Per-version Ratio of instances per number of direct children
ratioArticlesChildrenD Per-version I.d. with children at 0 ≤ 𝑑𝑒𝑝𝑡ℎ ≤𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ

totalSize Per-chain Total size of the vocabulary chain in number of triples
nSnapshots Per-chain total number of vocabulary versions
avgGap Per-chain Average time gap (in days) between the versions
avgSize Per-chain Average size of the vocabulary across all versions in number of triples
nInserts Per-chain Average number of inserted new statements from one version to the next
nDeletes Per-chain number of deleted statements from one version to the next
nComm Per-chain number of common statements across versions
isTree Per-chain (True or false) Indicates whether the vocabulary is a tree (without cycles) or a graph (with cycles)
maxTreeDepth Per-chain maximum tree depth among versions (i.e., highest depth level of chained subconcept relations)
avgTreeDepth Per-chain Average of previous, across all versions
totalInstances Per-chain Total number of typed entities, i.e. instances belonging to a class through a membership property
ratioInstances Per-chain 𝑟𝑎𝑡𝑖𝑜𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 = 𝑡𝑜𝑡𝑎𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠/𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒
totalStructural Per-chain Total number of structural relationships, i.e. number of statements indicating the relationship between two vocabulary concepts
ratioStructural Per-chain 𝑟𝑎𝑡𝑖𝑜𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 = 𝑡𝑜𝑡𝑎𝑙𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙/𝑡𝑜𝑡𝑎𝑙𝑆𝑖𝑧𝑒

Table 1: All features for vocabulary change considered in our approach, including per-version (i.e. one timestamped vocabulary
snapshot) and per-chain (i.e. including all versions) features.

Figure 2: A Web vocabulary version chain. Training and test
datasets for 𝑁 = 7, Δ𝐹𝐶 = 1 and Δ𝑇𝑇 = 2.

content. Instances are DBpedia resources with a rdf:type of
some class in this ontology and some rdfs:label label.

• 1 version chain of the Dutch historical censuses dataset [20],
(CEDAR, 8 versions), a SKOS taxonomy of historical occupa-
tions (HISCO). Instances are census observations with a cedar:occupation
of some HISCO concept and some skos:prefLabel label.

• 3 version chains from ontologies in the Linked Open Data cloud
[33] (LODC, 3+ versions), returning 49,379 ontologies of which
we filter all having at least two chained owl:priorVersion

which are de-referenceable and parseable; this results in in 3
ontology chains (geonames, fao and lingvoj).

• 134 version chains from Linked Open Vocabularies [32] (LOV,
3+ versions), a well-known collection of Semantic WV (e.g.
schema.org, PROV, DCAT, Bio, FOAF, etc.) that covers the 9
broad domains shown in Figure 3.
Each version within these chains consists of (a) schema infor-

mation expressed using vocabularies like SKOS [21], RDF Schema
[23] and OWL [19]; (b) instance data making use of such schema;
and (c) labels describing the nodes of the schema and the instances.
A detailed breakdown of these 4 groups, the 139 version chains
and their characteristics is available online.3. The selection of these
specific datasets is due to multiple reasons. First, they cover different
levels of semantic expressivity, from SKOS taxonomies to OWL
ontologies. Second, the temporal gap between each version varies
from a minimum of 6 days (LOV), 10–12 months (DBpedia), 4.5
years (LOV) to 10 years (CEDAR). Third, the selection contains
both manually and automatically created datasets: the DBpedia on-
tologies have a mixed automatic/manual maintenance [18], while
the CEDAR data is a totally manually maintained dataset. Fourth,
DBpedia data is born-digital, open, and still evolving (2007–), whilst

3http://bit.ly/kos-change
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Technical
1.5%
Linguistic
7.5%
IoT
3.0%
Biomedical
3.0%
Cultural
13.4%

Geographic
12.7%

Government/organisations
14.9%

Dataset/metadata
31.3%

Academic
12.7%

Figure 3: Domains represented in the LOV data. Dataset/meta-
data includes dataset, library, service descriptions. Governmen-
t/organisations includes public and private descriptions. Cul-
tural includes persons, social relations, media artifacts.

the CEDAR dataset is historical legacy, non born-digital, and tem-
porally closed (1849–1930). The LOV dataset includes a brought
range of sizes, on avarage 1K triples. LOV versions chains are on
average considerably smaller than DBpedia and CEDAR, which
have 10 million and over 2 million triples respectively. The three
chains in LODC are of sizes 22K, 16.5K, and 1.5K triples each. LOV
covers the range of small KOS starting at 19 triples for the smalles
and ending at 18.6K triples for the largest. Conclusively, DBpedia,
CEDAR, LOV and LODC cover a wide range of different KOS in
various aspects such as size, ageing, and construction.

4.2 Experimental Setup
in accordance to our research questions our evaluation process is
three-fold. First, we use selected features for supervised learning,
and evaluate the quality of the resulting classifiers on predicting
concept change (RQ1). To evaluate the resulting models, we use
10-fold cross-validation on all datasets and report the performance.
In addition, we use the long chains, and abundance of instance data,
of DBpedia and CEDAR to compare the predictions with the actual
changes in a next dataset version. To do this, we use the dataset 𝑉𝑒
produced after setting the parameter Δ𝑇𝑇 , and we compare predic-
tions with unseen labeled data. Since more versions are available
in the chains of CEDAR and DBpedia, we execute several learning
tasks adding more past versions to {𝑉𝑡 } incrementally. We study
how this impacts prediction of change in 𝑉𝑖 . To measure model per-
formance we use precision, recall, F-measure, and area under the
ROC curve. We report the best of the 10-fold cross-validation; in
DBpedia and CEDAR, we also use the unseen 𝑉𝑒/𝑉𝑖 version for
testing. Second, we assess the quality of our features as concept
change predictors, choosing the most performing ones via feature se-
lection. Feature selection is executed by the Relief algorithm [15],
whose results will answer RQ2. Third, we use linear and multimodal
logistic regression on the learning results to explain what character-
istics of the input versioned vocabularies make their changes more
predictable. With this part of our evaluation, we answer RQ3.

Parameter tuning. For our framework parameters, we train mod-
els with all permutations regarding the number of ontology versions,
the and paremters, and the values of structural, instance and label
properties; and select the one with the best performance. For the ML

hyperparameters, we rely on the default experimental values pro-
vided by the WEKA interface. The relevance threshold parameter 𝑡
is experimentally set at 0.8, the Relief parameters at 𝑀 = 1, 𝐷 = 1,
𝐾 = 10, and the ranker parameters at 𝑇 = 0.05 and 𝑁 = 1.

5 RESULTS AND DISCUSSION
We introduced a change prediction method based on concept change
of previous versions. In this section, we report on our results, pro-
viding evidence for all our research questions evaluating: (RQ1)
general performance using a concept change method to predict fu-
ture changes in a domain-independent setting, aiming at genericity;
and in order to understand and explain this genericity, (RQ2) the
performance of the per-version feature set based on semantics (see
Section 3.2) and structure of vocabularies; and (RQ3) the perfor-
mance of the per-chain features leading to best change predictions
and specific model choices (see Section 3.2). We also discuss the
results in connection with each research question separately. We find:
(RQ1) strong change prediction ML models for almost all datasets
with >90% performance (Section 5.1); (RQ2) highly ranked per-
version features dealing with the structure and instances of a concept
and its neighbourhood (e.g. siblings, parents, dirArticlesChildrenD2)
(Section 5.2); and (c) high correlations between per-chain explana-
tory variables such as nSnapshots and avgGap, and performance of
change prediction (Section 5.3).

We emphasise that change prediction, just like link prediction or
graph completion methods, comes with its own challenges when
evaluating for accuracy. True predictions are penalised for not being
present in the dataset and assumed to be false. Therefore, the true
performance cannot really be known [2, 26].

5.1 Change Prediction
Table 2 shows precision, recall, F-measure, and ROC scores after
executing our proposed framework in all datasets described in Sec-
tion 4.1. Predictions for DBpedia and CEDAR are reported for the
newest version, for LODC and LOV we report CV results. The
three chains in LODC (fao, geonames, lingvoj) are listed separately.
As LOV is made of 134 different version chains, Table 2 shows
the average over all of them. Predictive models for DBpedia and
CEDAR achieve F-measures of 0.98 and 0.91 respectively. Figure 4
shows these results in more detail, running our approach six times
on DBpedia and CEDAR to account for their long version chains.
ROC areas show that models are robust using cross-validation in
almost all datasets. Precision and recall are balanced and contribute
equally to good F-measures. We observe how the non-overfitting
tendency of NaiveBayes is an advantage if the classifier is trained
with more past versions: e.g. MultilayerPerceptron predicts better
with less data (F-measures from 0.82 to 0.30), but with more ver-
sions NaiveBayes performs better (0.72 to 0.84). Overall, CV results
across all 4 datasets, DBpedia (0.98), CEDAR (0.91), LODC (0.736)
and LOV (0.922) are encouraging, and show that high performance
(>90%) ML models for vocabulary change prediction can be learned
using domain-agnostic features.

However, the availability of sufficient structural and instance data
can severely affect these results, as shown in e.g. geonames (0.527).
This might be especially true when using these models to predict the
unseen𝑉𝑒 versions, where performances can drop significantly (0.67
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DBpedia CEDAR fao
(LODC)

geonames
(LODC)

lingvoj
(LODC)

LOV (avg.)

Precision .98 .93 .751 .438 .95 .895
Recall .98 .90 .765 .662 .947 .951
F-measure .98 .91 .744 .527 .937 .922
ROC area .81 .84 .844 .5 .792 .566
Best ML model Random Forest Simple Logistic Hoeffding Tree SGD Multilayer Perceptron Bayes Net

Table 2: Best 10-fold CV training scores in the version chains from DBpedia (𝑉𝑒 = 2003), CEDAR (𝑉𝑒 = 1930), the three LOD SPARQL
endpoints (LODC), and average over LOV. Scores are between 0 (worst) and 1 (best). For LOV, BayesNet was chosen as the algorithm
building the best models in the majority of chains.

Precision Recall F−measure ROC area

DBpedia 10−fold CV DBpedia test

1 2 3 4 5 6 1 2 3 4 5 6

0.00

0.25

0.50

0.75

1.00

Ve, version

P
ro

ba
bi

lit
y

CEDAR 10−fold CV CEDAR test

18
80

18
90

19
00

19
10

19
20

19
30

18
80

18
90

19
00

19
10

19
20

19
30

0.00

0.25

0.50

0.75

1.00

Ve, year

Figure 4: Best change prediction performance in the CEDAR and DBpedia refinement experiment with 6 incremental learning runs.
The y-axis is the appropriate value for precision, recall, F-measure and ROC. The x-axis is a snapshot identifier.

in CEDAR and 0.36 in DBpedia). In CEDAR/DBpedia (Figure 4),
we see a decreasing performance when the time gap increases; i.e.𝑉𝑒
is harder to predict when it is farthest away in the future. A plausible
explanation for this is that past versions contain valuable knowledge
for change prediction only to an extent; after this, past knowledge
would become noise if the vocabulary concepts have changed too
abruptly in the last version 𝑉𝑒 . We observe that CV results are
generally worse in the LODC data (0.744, 0.527, 0.792). This can be
due to the fact that datasets in SPARQL endpoints are generally less
consistent, include less vocabulary descriptions, and are not always
available [33]. Due to the unavailability of sufficient versions, LODC
and LOV are only evaluated through 10-fold CV, with F-measures of
0.744, 0.527 and 0.937 for the LODC vocabularies (fao, geonames,
lingvoj) and 0.922 for LOV. ROC areas show that models are robust
using CV in all datasets, except for geonames (0.5).

Comparison with other methods. Some of these results are
similar or outperform the state of the art [26]; simultaneously, they
are very hard to compare to similar methods, especially SemaDrift
[28] and FCA [11]. Comparing our results with [26], we observe
that for DBpedia and CEDAR we clearly outperform in the 10-fold
CV and the pure test results are also slightly higher or comparable.
In the case of LOV biological ontologies, our 10-fold CV results
match the performance of [26]. Additionally, we need to stress, that
our task is not completely the same as [26]. We also found that

our datasets are much smaller than GO. However, we do achieve
similar and even better results with smaller datasets and shorter
version chains. This indicates that our approach can be used without
such an extensive evolution as seen with GO in [26], which is a
positive finding. Additionally, our richer feature sets could also
account for the better results. They make our approach more usable
and explainable, because they are more general, do not restrict in
the domain of application, and can be easily interpreted (e.g. see
Table 3). At this point, we are unable to compare our results to
those of SemaDrift [28] and FCA [11]. SemaDrift [28] is purely
used for measuring concept drift between two concepts (not entire
ontologies), but not for learning or predicting change; however we
leave experimenting with SemaDrift’s change metrics for future
work. On the other hand, FCA [11] learns a new representation
of the ontology and not a model of the changes which will occur.
Another difference is the examined timeframes: [11] uses only a few
weeks of data, where our dataset versions can be much further apart.
They found that adding more data was beneficial to the performance
of their model however, we found that forgetting too old versions
increased our performance. Because of the different task, [11] old
data is beneficial, whereas in our model older content can possibly
include a shift in meaning making our performance worse.
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CEDAR DBpedia LODC & LOV

siblings dirChildren parents
dirArticlesChildrenD2 siblings siblings
ratioArticlesChildren dirChildrenD2 ratio3
dirArticles dirChildrenD3 dirChildren
dirArticlesD1 dirChildrenD4 ratio0
dirArticlesD2 dirArticlesChildrenD2 ratio

Table 3: Ranked features in CEDAR and DBpedia by Relief
[15]. The ranking for LODC and LOV features is averaged from
the rankings in specific vocabularies.

5.2 Per-version Features
Table 3 shows the ranking of selected per-version features accord-
ing to their feature score in Relief [15]. Structural features are
consistently ranked high across all datasets (e.g. siblings), while
instance features are consistently important for the datasets that have
them (e.g. dirArticles, dirArticlesChildrenD2).4 In CEDAR,
instance membership features (dirArticles, dirArticlesChildren) are
more often selected. Conversely, in DBpedia structural properties
are more often selected (dirChildren, dirChildrenD, siblings). In
this same line, structural features are also preferential for LODC
and LOV: parents, siblings and dirChildren rank higher, and seem
to have more weight closer to the concept (siblings) than at higher
depths (e.g. dirChildrenD4).

The availability of sufficient instance and schema data could
explain the majority of the most influential per-version features.
CEDAR, a taxonomy with instance data for almost every class, dis-
plays a preference for mixing both structural and instance features.
DBpedia, is rich in both, but the complexity of the DBpedia ontology
[30] might explain the preference for features about ontological rela-
tionships between classes and subclasses. The absence of instance
data for LODC and LOV makes the choice for structural features
preferential as the main signal for change prediction. The unavailabil-
ity of instances in LODC and LOV seem to indicate the importance
of structural features.An explanation could be that vocabularies in
LODC and LOV are generally more flat and hence changes generally
have an impact on specific, sparse concepts.

A qualitative evaluation on specific vocabulary changes supports
these hypotheses. In CEDAR, cedar:hisco-06, the class of “medi-
cal, dental, veterinary and related workers”, is a concept correctly
predicted to change. Most of its structural features present high stabil-
ity across versions, e.g. number of children (4) and siblings (9); but
those related to its instances vary, e.g. number of instances (841, 68,
143, 662, 110). In DBpedia, the concept dbpedia:CollegeCoach
is also expected to change, with the number of Wikipedia articles
pointing to it (instance feature) increases linearly (2787, 3520, 4036,
etc.). Structurally, however, its siblings remain stable (21, 21, 23,
23) until it gets a new parent and its siblings suddenly explode (23,
344). This shows that both types of features can be deciding in terms
of change, and the importance of feature engineering for generating
human-understandable explanations.

Therefore, instance features are ranked higher to predict change
in datasets that have rich information on them (CEDAR); while
structural features are preferential in datasets with more structural
(LODC, LOV) and hybrid (DBpedia) information. In other words,

4We leave a more formal analysis using feature consistency metrics for future work.
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Figure 5: Coefficient values of the best linear regression model
explaining change predictability depending on features.

selected features and classifiers depend on the kind of data available;
however, when both are present (e.g. DBpedia), structural features
continue to be more defining of change than instance ones.

5.3 Per-chain Features
To explain per-chain features (second half of Table 1) that impact
change predictability we use: (a) regression analysis, to understand
which ones are good predictors of high classification performance
(i.e. we use area under the ROC curve as a response variable); and
(b) multinomial logistic regression, to analyse which ones are good
predictors of the best classifier type. The best regression analysis
model is shown in Figure 5. Since we have 137 degrees of freedom,
at 𝑝 < 0.05 significance level any 𝑟 value above 0.166 denotes depen-
dency. nSnapshots (0.276) and avgTreeDepth (0.192) hold a direct
dependency on roc, while avgGap (-0.263) holds an inverse depen-
dency. Larger versions (totalSize, 0.180) with more inserts between
versions (nInserts, 0.166) and more instances (totalInstances, 0.176)
explain models with high precision and recall. In summary, version
chains with more versions (snapshots), more frequent releases, with
deeper tree structures and with more instance data are related to
better predictive models for vocabulary change. We find that avg-
Gap is influential at selecting a tree-based classifier instead of a
bayes-based one. According to the results of the multinomial logistic
regression,5 we find that totalSize is influential at selecting function-
and rule-based classifiers instead of bayes-based classifiers. Almost
all classifier families will be less likely chosen if the elapsed time
between versions (avgGap) increases; in other words, more frequent
releases will favour most models predicting vocabulary change. In-
terestingly, ratios on instance and schema data will influence the
best classifier type in an inverse way: more instance data will favour
tree-based and rule-based classifiers; while more schema data will
favour bayes-based classifiers. Finally, multinomial logistic regres-
sion shows that the most performant classifier is selected mostly
depending on the number of versions in the chain, the tree depth of
these versions, and the ratio of instance data in each version.

5See supplementary material at http://bit.ly/web-vocabulary-change
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6 CONCLUSIONS AND FUTURE WORK
Changes in WV pose important challenges to publishers and con-
sumers of data, regarding the intensive knowledge-based mainte-
nance of vocabularies and their adequate, up-to-date use in datasets.
We propose to automatically detect which parts of a vocabulary
will undergo change in a forthcoming version, leveraging change
knowledge contained in past versions and using supervised learning
to learn change prediction models. We contribute a customizable
and domain-independent framework based on feature extraction
from vocabulary version chains; these features can be used to pro-
vide human-understandable explanations of change. Regarding our
research questions, we find that concept change can reliably be pre-
dicted with high F-measures (0.98 in DBpedia, 0.91 in CEDAR, 0.73
in LODC, 0.92 in LOV) and independently of the domain of applica-
tion (139 multi-domain datasets), generalising previous results [26]
(RQ1). Importantly, major vocabulary revisions and the availability
of instance data have an impact in the usefulness of past versions
for change prediction. Moreover, change prediction evaluations are
known to biased to already known changes while penalising false
predictions, which could simply be unknown in the dataset [26, 34].
Thus, we defer studying the usefulness of such change predictions,
by e.g. presenting them to domain experts, to future work. We also
find that the per-version features that have a greater influence on
predicting concept change are the number of instances and class
relations of a concept and its ontological surroundings (RQ2). If
we look at per-chain features, concept change predictions are better
when the vocabulary version history is longer; versions are released
more often; and when these have a deeper subclass hierarchy (RQ3).

In the future, we plan to incorporate and compare directly our re-
sults with other approaches such as [11, 25, 28]; this comparison was
impossible since these approaches do not focus on version chains as
we do. Specifically, we will apply our framework to ontologies from
the biomedical domain (OBO Foundry [27]) and use the same dataset
as [26] to compare performance more directly. Secondly, we will
investigate how other definitions of concept change [7, 13] can affect
prediction performance. Third, we plan to scale up our approach
with larger, streamed datasets such as Schema.org [12] and Web
Data Commons [22], aiming towards real-time change prediction
and incorporating heuristics-based approaches such as SemaDrift
[28] to improve computing time. Fourth, we will investigate the
effects of reasoning in ontology change prediction, potentially bring-
ing in new predictors and less learning times. Lastly, we will study
if the introduction of predictive models in the practice of knowledge
engineers, e.g. using prediction models for change recommendation,
does actually improve efficiency in knowledge engineering tasks.
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