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Abstract

Generating symbolic music with language
models is a promising research area, with po-
tential applications in automated music com-
position. Recent work shows that Trans-
former architectures can learn to generate
compelling four-instrument scores from large
MIDI datasets. In this paper, we re-train
the small (117M) GPT-2 model with a large
dataset in ABC notation, and generate sam-
ples of single-instrument folk music. Our
BLEU and ROUGE based quantitative, and
survey based qualitative, evaluations suggest
that ABC notation is learned with syntacti-
cal and semantic correctness, and that samples
contain robust and believable n-grams.

1 Introduction

Recent advances in deep learning have greatly im-
proved the performance of neural generative sys-
tems at automatic music generation. For example,
Magenta’s MusicVAE (Roberts et al., 2018) uses
hierarchical autoencoders to interpolate novel mu-
sic samples between different points in a MIDI
latent representation. Similar techniques have
been proposed for the task of learning language
models, mostly in Natural Language Processing
(NLP). For example, the Transformer-based neu-
ral architectures of BERT (Devlin et al., 2018),
GPT-2 (Radford et al., 2019), and Transformer XL
(Dai et al., 2019) use encoders/decoders and var-
ious attention mechanisms to achieve great per-
formance at language learning and generation.
Therefore, it is no surprise that these models have
been applied for learning and generating symbolic
music scores, assuming that similar sequence-to-
sequence attention mechanisms to those of writ-
ten natural language hold for written music. For
example, LakhNES (Donahue et al., 2019) and
MuseNet (Payne, 2019) use these language mod-
els over MIDI music representations, successfully

X:1
T:The Legacy Jig
M:6/8
L:1/8
R:jig
K:G
GFG BAB | gfg gab | GFG BAB | d2A AFD |
GFG BAB | gfg gab | age edB |1 dBA AFD :|2 dBA ABd |:
efe edB | dBA ABd | efe edB | gdB ABd |
efe edB | d2d def | gfe edB |1 dBA ABd :|2 dBA AFD |]

Listing 1: An example tune in ABC notation.

addressing large scale, multi-instrument, and long
sequence MIDI score learning and generation.

However, a shortcoming of these works is that
they learn exclusively over MIDI representations,
leaving unanswered questions for other genera
and datasets. For example, folk and traditional
music are typically encoded using ABC notation
(Walshaw, 2011). Moreover, such experiments
are almost exclusively evaluated using perplex-
ity (Brown et al., 1992) instead of other language
evaluation metrics such as BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004). In this paper,
we propose to address these issues by adapting
the pre-trained small (117M parameters) language
model of GPT-2 (Radford et al., 2019) to learn rep-
resentations of an ABC notation dataset. ABC no-
tation is an ASCII based character set code that
facilitates the sharing of music online (see List-
ing 1). The first lines indicate the tune index in
the file (X:); title (T:); time signature (M:); de-
fault note length (L:); type of tune (R:); and key
(K:). Following this is the tune, with the | symbol
separating measures. Notes are displayed with the
letters a to g, where lowercase letters and apos-
trophes denote higher octaves and uppercase let-
ters and commas denote lower octaves. Further
punctuation marks represent variations in the tune.
We use conditional sampling, feeding the model
two measures and letting it generate the sequence
remainder. We evaluate these samples quantita-
tively, using the BLEU and ROUGE metrics in
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various n-gram tests for robustness; and qualita-
tive, via a user survey. Our research question is:
“To what extent can language models learn robust
representations of ABC notation single-instrument
folk music?”.

2 Related Work

Many language models derived from results in
computer vision have been investigated in recent
years, most with successful applications in music
learning and generation. For example, long-short
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) recurrent models are commonly used
for text generating tasks; and hidden Markov
models (HMM) (Rabiner and Juang, 1986) have
been used for e.g. speech recognition. More
recently, advances in encoder/decoder neural ar-
chitectures have produced so-called Transformer
models, like BERT (Devlin et al., 2018); Ope-
nAI’s GPT-2 (Radford et al., 2019) –a sequence
to sequence transformer with an attention mech-
anism; and Transformer XL (Dai et al., 2019),
a high performance transformer with high com-
pute requirements. The application of these mod-
els to music generation has produced various re-
sults. For example, OpenAI’s Jukebox (Dhari-
wal et al., 2020) procudes high-fidelity music in
the raw audio domain. However, we consider
here the language models that can be applied to
symbolic music generation. In this area, Music-
VAE (Roberts et al., 2018) uses a hierarchical vari-
ational autoencoder to learn an interpolable la-
tent space of MIDI representations. The works
closest to ours are MuseNet (Payne, 2019) and
LakhNES (Donahue et al., 2019); in these, au-
thors re-train a Transformer model pre-trained on
the Lakh MIDI dataset (Raffel, 2016), a large col-
lection of 176,581 unique MIDI files, to generate
four-instrument scores. Our approach is inspired
by these works, but focuses on: (a) using GPT-2
instead of Transformer XL, due to the former’s ex-
cellent text generation capabilities and left-to-right
training; and (b) learning ABC representations of
folk and traditional music, rather than using cross-
domain MIDI files.

3 Methodology

The process for this research began with clean-
ing the original data set1 and putting all samples
in separate files. This data set was then used to

1See https://www.gwern.net/GPT-2-music

fine-tune the GPT-2 model on. The fine-tuning
is stopped, when the loss barely decreases over
a large amount of time. This final model will be
used to create conditional samples by feeding the
model a short musical sequence of two measures
from an existing song and letting it generate a sub-
sequent sequence. From the output, another two
measures are taken. The two measures from the
original song and the generated part are combined
to form the new input sequence. This process is
repeated, alternating measures from the original
song with measures that are generated by GPT-2.
Then, these samples are evaluated on their syntax
and semantics and they are evaluated using BLEU,
ROUGE and a user evaluation form. The outcome
of these evaluations will determine whether valid,
but also fluent musical pieces can be generated, by
having some control over the process.

4 Experiment

The model with 117M parameters was used for
this, considering the limited amount of time and
the fact that larger models might overfit. Further-
more, the longer the model is trained, the better it
can familiarize itself with the training data. This
does not necessarily mean it performs better when
generating output, but it does increase the chances,
up to a certain point. This is why the training is
stopped when the loss hardly decreases over a sub-
stantial amount of time. The model alternated be-
tween an average cross-entropy loss of 0.86 and
0.94 over several hours, meaning the model had a
hard time optimizing further from this point on.
The resulting model was used to generate con-
trolled sequences of music. Two songs from the
used data set were chosen and two songs from the
left out data set were chosen to diversify. Firstly,
the first two measures of an original song are fed,
including the header. Based on this, the model is
then prompted to generate notes that follow the
sequence. From the outcome, only the first two
measures are added to the input. The resulting,
larger sequence will be fed to the model again, so
it can extend this sequence with two measures as
well. This is repeated three times, to obtain a song
of 12 measures, that consists of 6 measures from
the original song and 6 measures generated by the
model, alternately.

https://www.gwern.net/GPT-2-music
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4.1 Quantitative Evaluation
The similarity between the original melodies and
the samples are calculated using the BLEU and
ROUGE metrics. Two tables are displayed for the
n-grams of BLEU and ROUGE scores for each
sample.

BLEU scores
1-gram 2-gram 3-gram 4-gram

Sample 1 0.60 0.51 0.48 0.46
Sample 2 0.71 0.57 0.48 0.45
Sample 3 0.56 0.47 0.44 0.42
Sample 4 0.76 0.60 0.54 0.52

Table 1: The BLEU scores for all samples over n-grams
1 to 4

ROUGE scores
1-gram 2-gram

Sample 1 0.62 0.53
Sample 2 0.72 0.58
Sample 3 0.89 0.74
Sample 4 0.77 0.60

Table 2: The ROUGE scores for all samples over n-
grams 1 to 4

The BLEU score measures how many bi-grams
from the GPT-2 generated samples occur in the
orginal song. The scores can range from 0 to 1.
0 indicating no overlap with the original song, 1
indicating a perfect overlap with the original song.
Since, half of a sample is copied from the orig-
inal song, the precision should not go much be-
low 0.50. However, this might occur, when the
generated sample has less tokens than the origi-
nal song, which is the case in sample 3. Sam-
ples 1 and 2 have some, but not excessive over-
lap with their originals. While the fourth sample
has many overlapping bi-grams with the original
song. The ROUGE score computes the number
of bi-grams from the original song that occur in
the generated sample. Samples 1, 2 and 4 overlap
a little more than 50%, keeping in mind that this
might be caused by the length of the sample. Sam-
ple 3 shows that numerous bi-grams overlap with
the generated sample.

4.2 Qualitative Evaluation
The questionnaire yielded 83 responses. Roughly
half of these were male and half were female, with
one person preferring not to specify this. Slightly

more than 50% of the participants were between
the age of 10 and 25, while the rest was older.
Most candidates were educated on the level of a
Bachelor’s degree. About a quarter is educated
higher than this and the remaining quarter is ed-
ucated lower or not at all. 52% of participants
were students, of which 12% had either a full-time
or part-time job as well. Another 41% was occu-
pied by solely a full-time job, while the remaining
percentage either had a part-time job, was unem-
ployed or had another occupation. As expected
over half of the participants were Dutch. The other
nationalities are spread over 15 other countries. As
for the musical knowledge, half of the participants
scored themselves below average, approximately
20% thought they were (close to) an expert and
over a quarter thought they had an average level of
musical knowledge.

Figure 1: The average ratings of the questionnaire by
sample

Regarding the scoring of the samples, the ques-
tions were answered by a rating from 1 to 5. The
first sample got an average scoring of 2.6 for co-
herence and 3.1 for the amount of recurrence. The
second sample got a coherence of 2.7 and was
scored 2.9 for recurrence. The third sample had
a coherence of 4.1 and a recurrence of 3.6. The
fourth sample had a coherence of 2.6 along with a
scoring of 2.5 for recurrent themes. The two sam-
ples that contained existing songs got a score of
3.7 and 3.9 for coherence and a score of 2.9 and
3.5 for recurrence. 2

4.3 Syntax and semantics
The samples are presented, where the areas in bold
are generated by GPT-2. When looking at the
syntax of the first sample, the model seems to have

2See https://soundcloud.com/
user-512999768

https://soundcloud.com/user-512999768
https://soundcloud.com/user-512999768
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X:129531
M:6/8
K:Cmaj
ˆc2ˆAˆGˆGˆG|ˆcˆAˆAˆA2ˆG|

K:Cmaj
|:CDECDE|=F2GA2G|

|ˆc2ˆAˆGˆGˆG|ˆcˆAˆAˆA2ˆG|

M:3/4
K:Cmaj
|:=C=B,=C=F=G,=C|=B,=D=D=F2=G|

|=f2ˆg=fˆcˆd|=fˆcˆAˆA2ˆG|

=A=G=E=c2|1=E=C=B,=D=C|

Listing 2: The first sample of GPT-2’s generated ABC
notation.

X:129557
M:12/8
K:Cmaj
|ˆC2=FˆG2ˆG |ˆAˆcˆAˆG=FˆD|

=F=E/2=D/2=C=F=G=A|=G=F=D=F2=A,|

ˆC2=FˆG2ˆG|ˆAˆcˆAˆG=FˆG|

L:1/8
K:Gmaj
|:D2G2GF|DEGABc|

=fˆdˆc=cˆAˆG|ˆAˆcˆAˆG=FˆG|

M:6/8
K:Cmaj
|:ˆCˆD=FˆCˆGˆF|ˆGˆCˆcˆGˆFˆA|

Listing 3: The second sample of GPT-2’s generated
ABC notation.

adopted it well. However, when looking at the se-
mantics, the meter is difficult for the model to ad-
here to. As for the meter in this melody, which is
6/8, the model mostly gets it right, until it changes
the meter to 3/4. After this, the model still holds
on to the first meter and in the last generated part
follows neither of the two meters. Furthermore,
it seems that the model wants to specify what key
and meter it is using, even though the key is the
same as the given key. What stands out is that the
model is reluctant to use the caret, despite the fact
that this symbol is frequent throughout the origi-
nal song. On top of this, the model seems to have
a tendency to use equality signs, which represents
an unaltered pitch of a note. The melody of
sample 2 is syntactically flawed. A colon is used
to open a repetition, however it is never closed.
This happens in both the second and third gener-
ated parts. The meter is 12/8 in the beginning and
changed to 6/8 in the last generation. The key is
changed in the last two generations, first to G ma-
jor and then back to C major. Another noticeable
concept is that in the first generation the notes are
all naturalized, while this is uncommon in the orig-

X: 136
K:C
M:2/4
L:1/8
"C"ce/2c/2 ge/2c/2|"C"ce/2c/2 "G7"B/2c/2d/2e/2|

=C=E/2=F/2=G=c2|=c2

"C"ce/2c/2 ge/2c/2|"C"ce/2c/2 "G7"B/2c/2d/2e/2|

|AcedcB|GED2Bc|

"Am"ce/2c/2 "Em"Be/2B/2|"F"Ac/2A/2 "C"GA/2G/2

|1=B,=C/2=B/2=AˆG=E=C|=D=E=F=G=A=B|

Listing 4: The third sample of GPT-2’s generated ABC
notation.

X: 155
M:4/4
L:1/4
K:F
"F"F>G A F|"Bb"D F "C"C2|

K:A
Acc/e/c/eea2|geBcdec|

"F"F/2 F G/2 A F|"Bb"D F "Am"C2|

K:Gmaj
G>EEBAGA|BcdA/2G/2[B3G3]B|

"Fmaj7"A c c c|A>c c2|

DBB>A|B2G>B|

Listing 5: The fourth sample of GPT-2’s generated
ABC notation.

inal song. However, the carets that are frequent are
not adopted until the last generation.

5 Conclusion

Influencing the generation process of samples led
to reasonable results. The model does not devi-
ate far from correct syntax and semantics. Be-
sides this, plausible results are obtained using both
the BLEU and ROUGE metrics. This can be de-
ducted from the small decrease in performance
while the n-grams increase. The user evaluation
showed around average or higher ratings for each
of the samples obtained from users with different
backgrounds. These results are reason to believe
that this method can result in robust musical se-
quences. However, improvements may lead to bet-
ter results. A larger dataset may increase the mod-
els pattern recognition. A dataset could also con-
tain ABC Notation in another genre to see if one
genre is easier to learn than others. Besides this,
GPT-2 has a number of parameters that can be al-
tered when creating samples. On the contrary, one
might choose to use another language model alto-
gether, such as those mentioned in the related work
section.
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