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Abstract

Abusive language detection relies on under-
standing different levels of intensity, expres-
siveness and targeted groups, which requires
commonsense reasoning, world knowledge and
linguistic nuances that evolve over time. Here,
we frame the problem as a knowledge-guided
learning task, and demonstrate that LLMs’ im-
plicit knowledge without an accurate strategy
is not suitable for multi-class detection nor
explanation generation. We publicly release
GLlama Alarm, the knowledge-Guided ver-
sion of Llama-2 instruction fine-tuned for multi-
class abusive language detection and explana-
tion generation. By being fine-tuned on struc-
tured explanations and external reliable knowl-
edge sources, our model mitigates bias and gen-
erates explanations that are relevant to the text
and coherent with human reasoning, with an
average 48.76% better alignment with human
judgment according to our expert survey.

Warning. This paper contains examples of poten-
tially offensive content. Profanities are obfuscated
with PrOf (Nozza et al., 2023).

1 Introduction

Institutions and social media companies worldwide
are implementing content moderation policies to re-
duce the spread of online abusive language1 given
its rapid growth and its harmful effects (Volges,
2021; Vedeler et al., 2019). The detection of abu-
sive language is the first step in content moderation
and has become a central task in natural language
processing (NLP). However, automatically detect-
ing abusive language is complex. It requires knowl-
edge about commonsense reasoning, encyclopedic
entities and linguistics in order to capture all the
different nuances of abusive language, from ex-
plicit insults to stereotypes, a non-trivial task even

1E.g., the human rights-based approach by the United Na-
tions (de Varennes, 2021).

Model HateXplain Implicit Hate
binary 3-class binary 3-class

FLAN-Alpaca-xl 68.27 39.30 61.67 43.18
FLAN-T5-xl 72.01 45.05 62.15 32.69
mT0-xl 48.29 23.14 40.73 23.38
Avg.%↓ 43.98↓ 39.99↓

Table 1: Macro F1 of instruction fine-tuned LLMs when
prompted with zero-shot learning on two benchmarks.

for humans (Rahman et al., 2021). Moreover, the
EU regulation on algorithmic transparency further
challenges this field (Brunk et al., 2019), calling
for more transparent and less biased systems.

With the rise of Large Language Models (LLMs)
like LLaMa (Touvron et al., 2023a,b) showing pro-
ficiency across various NLP tasks and domains
(Brown et al., 2020; Zhang et al., 2023; Ziems
et al., 2023), many and diverse learning strate-
gies have emerged to leverage the implicit knowl-
edge these LLMs have acquired during pretrain-
ing (Liu et al., 2023): zero-shot prompting, few-
shot prompting, chain-of-thought, instruction fine-
tuning, inter alia. Recently, Plaza-del arco et al.
(2023) investigate zero-shot prompting FLAN-T5
and mT0 models for binary hate speech classifi-
cation, achieving performance comparable to and
surpassing encoder-based models across multiple
benchmark corpora. However, real-world abusive
language cannot easily be classified in a binary
setting (Davidson et al., 2017) as it relies on differ-
ent levels of intensity, expressiveness and targeted
groups. Table 1 shows the drop in performance of
off-the-shelf LLMs when moving from binary to
3-class settings.2 This raises the question “to what
extent is the implicit knowledge of LLMs retrieved
by these diverse learning strategies sufficient as
we increase the complexity of the task?” (RQ1).
Alternatively, if LLMs require further explicit exter-

2As recently shown in Dönmez et al. (2024) model’s re-
fusal to engage with offensive content can negatively impact
detection performance, which can further explain the low
scores in both settings.
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nal knowledge, “what type of knowledge do LLMs
need the most to effectively detect non-binary abu-
sive language?” (RQ2).

We answer these research questions taking into
account two challenging aspects in abusive lan-
guage research, namely unbiased detection and ex-
planation generation. Understanding how different
learning strategies impact LLMs’ bias in abusive
language detection is crucial to comply with regu-
lation as previous work shows that LLMs struggle
to learn long-tail knowledge (Kandpal et al., 2023)
which can lead to encode bias during classification.
Similarly, it is important to shed light on which
learning strategy, if any, makes LLMs generate the
most relevant explanation to the text while being
coherent with human reasoning, since stakeholders
involved in content moderation policies, from users
to moderators, are shown to benefit from receiv-
ing an explanation for why a specific text might be
abusive (Brunk et al., 2019; Calabrese et al., 2024).
According to Mishra et al. (2019), explanations
should be structured, entailing the words that con-
stitute abuse, the intent of the user, and the target
group, which further challenges the free-text nature
of LLMs in text generation.

Contributions. To answer these questions, we
(a) provide a thorough analysis of multiple LLMs
with diverse learning strategies across abusive lan-
guage detection, bias mitigation and explanation
generation tasks, and (b) study the alignment of
these LLMs with human judgment via an expert
survey. We report our main findings. (1) We show
that using off-the-shelf LLMs without an accurate
learning strategy exhibits low performance scores
on 3-level offensiveness and expressiveness detec-
tion tasks regardless of the model size (Table 1,
Table 5). They also exhibit bias towards targeted
groups and are unsuitable for generating plausible
explanations (Table 7). (2) We show there is a
distinct pattern between LLMs that have been pre-
viously fine-tuned for toxicity detection and those
that have not (Figure 1). While few-shot learning
helps the former in detecting multi-class abusive
language and mitigating bias, it harms the latter,
which instead benefit the most from learning strate-
gies that explicitly pass external knowledge to the
model (Table 5). (3) We demonstrate that temporal
linguistic knowledge leads to better performance,
with an average performance increase of 13.18%
(Figure 2). (4) We show that knowledge-guided
instruction fine-tuning outperforms vanilla instruc-

tion fine-tuning in explanation generation while
mitigating for bias (Figure 4, Figure 3). Build-
ing on this, we publicly release GLlama Alarm3,
a suite of knowledge-guided LLMs designed for
multi-class abusive language detection and expla-
nation generation.

2 Background: Language and Knowledge

2.1 Online Abusive Language

Although there is no agreed consensus on the defi-
nition of online abusive language, some common
traits seem to emerge looking at previous papers
(e.g., Benesch (2014); Erjavec and Kovačič (2012)),
instructions given to annotators (e.g., Waseem and
Hovy (2016); Davidson et al. (2017)), shared tasks
(e.g., HatEval (Basile et al., 2019)), and institu-
tional reports (e.g., ONU (2019)). Namely, (1) of-
fensiveness, i.e., the level of intensity of the abuse;
(2) expressiveness, i.e., how the abuse is conveyed;
(3) target, i.e., the attributes attacked by the abu-
sive text; (4) rationale, i.e., why the text is inten-
tionally harmful. Based on these traits, we define
online abusive language along four dimensions as
“any content against the commonly accepted stan-
dards (1–offensiveness) that overtly or covertly
(2–expressiveness) targets individuals based on a
specific characteristic (3–target) with the goal of
causing hatred (4–rationale)”. Following, we eval-
uate LLMs along these dimensions in non-binary
settings, which is crucial to mirror real-world abu-
sive language (Davidson et al., 2017). For instance,
policy regulations might differ in the level of offen-
siveness tolerated (e.g., hate speech vs. offensive
comments).

2.2 Knowledge Bases and Types

Similarly to how humans store information, a
knowledge base is a structured repository that adds
a semantic model to the data, including a formal
scheme with classes, sub-classes, relations as well
as rules for interpreting the data. Established works
classify knowledge bases by their type (Pan et al.,
2024; Zhen et al., 2022; Yin et al., 2022): (a) En-
cyclopedic, knowledge covering widespread infor-
mation in the open domain; (b) Commonsense,
routine knowledge people have of everyday world
and activities; (c) Linguistic, knowledge about the
meaning of language, including definitions, syn-

3Available at https://huggingface.co/dibo/
gllama-alarm-hatexplain, https://huggingface.
co/dibo/gllama-alarm-implicit-hate

https://huggingface.co/dibo/gllama-alarm-hatexplain
https://huggingface.co/dibo/gllama-alarm-hatexplain
https://huggingface.co/dibo/gllama-alarm-implicit-hate
https://huggingface.co/dibo/gllama-alarm-implicit-hate


onyms, and word usage; (d) Temporal, knowledge
about dates and events. These types of knowledge
are essential for developing robust NLP systems
capable of understanding and generating human
language effectively (Yin et al., 2022; Yang et al.,
2021). Remarkably, we show evidence of which
type of knowledge abusive language detection sys-
tems need by proposing an easy and open-source
knowledge-guided learning strategy in §3.2.

2.3 LLMs in Abusive Language Research

Recent studies have explored LLMs for abusive lan-
guage detection (Huang et al., 2023; Plaza-del arco
et al., 2023; Chiu et al., 2021), focusing on binary
hate speech, on a single learning strategy, and/or
on a single LLM. Moving beyond detection, Wang
et al. (2023) recently probe GPT-3 for free-text
explanation generation in hateful content modera-
tion. We are the first to present a systematic review
of multiple LLMs in non-binary abusive language
across five learning strategies, shedding light on
their capabilities from detection to explanation gen-
eration. Besides, we focus on structured explana-
tions instead of free text, as the latter cannot guaran-
tee all the desired properties that previous research
show to improve user trust (Brunk et al., 2019) and
moderator speed of annotation (Calabrese et al.,
2024). Few papers have recently enhanced lan-
guage models with additional information for hate
speech detection. Roy et al. (2023) probe LLMs
in multi-class hate speech detection, showing that
adding information about the target victims and the
explanations in the prompts improves performance.
Instead, we propose a knowledge-guided learning
strategy that (i) leverages open-source knowledge
instead of manually-annotated information, and (ii)
is used to identify which type of knowledge LLMs
need to effectively handle abusive language instead
of adding target victims information and explana-
tions that presuppose the presence of hate speech in
the text. AlKhamissi et al. (2022) fine-tune BART
(Lewis et al., 2020) on commonsense and stereo-
typical datasets, respectively ATOMIC20

20 (Hwang
et al., 2021) and StereoSet (Nadeem et al., 2021),
for binary hate speech detection. While their knowl-
edge infusion strategy leverages implicit knowl-
edge acquired during the additional fine-tuning,
our knowledge-guided learning strategy leverages
explicit knowledge passed in the prompts, facilitat-
ing in-context learning and instruction fine-tuning.
In addition to commonsense, our model GLlama
Alarm has been instruction fine-tuned on encyclo-

pedic and temporal linguistic knowledge for both
multi-class abusive language detection and expla-
nation generation.

3 Methodology

3.1 Datasets

Following the four-dimensional definition of abu-
sive language outlined in §2.1, we select the
datasets in Table 2. They account for three levels
of offensiveness and expressiveness, multiple tar-
geted attributes, and rationales, which we will use,
respectively, for offensiveness and expressiveness
detection, bias mitigation, and explanation gener-
ation tasks. We use HateXplain (Mathew et al.,
2021) for the 1st dimension (offensiveness), the 3rd

one (target), and the 4th one (rationale), whereas
the Implicit Hate Corpus (ElSherief et al., 2021)
is chosen because it accounts for the 2nd dimen-
sion (expressiveness), the 3rd one, and the 4th one.
To the best of our knowledge, these datasets are
the first to simultaneously account for all these di-
mensions of online abusive language. As these
datasets provide unstructured rationales, we design
a template to create structured explanations, con-
taining whether the text is abusive and, if so, the
words that constitute abuse (in HateXplain) and
the intent of the user (in Implicit Hate) based on
previous research (Mishra et al., 2019; Calabrese
et al., 2024). We use these structured explanations
as ground-truth. Cf. Appendix B for details.

Dataset Labels Target Rationale

HateXplain
hate speech,
offensive,
normal

women,
black,
...

Token-
level

Implicit
Hate

implicit hate,
explicit hate,
not hate

Jewish,
Muslims,
...

Implied
statement

Table 2: Summary of datasets used.

3.2 Learning Strategies

To shed light on LLMs’ implicit knowledge in ef-
fectively capturing real-world abusive language,
we conduct a thorough analysis across four models
and five learning strategies. In addition to three
standard vanilla strategies, we propose a novel
knowledge-guided strategy for in-context learning
and instruction fine-tuning to measure the impact
of explicitly adding external knowledge to LLMs
vs. their implicit knowledge, and which type of
knowledge LLMs need the most. We do not seek to
evaluate the ability of LLMs in retrieving relevant



Type Source Example

Encyclopedic Wikipedia
“Pepe the Frog is an Internet meme consisting of a green anthropomorphic frog
with a humanoid body. Pepe originated in a 2005 comic by Matt Furie called
‘Boy’s Club’. It became an Internet meme when its popularity steadily grew...”

Wikidata “Pepe the Frog is a comic character and Internet meme.”

Commonsense ConceptNet “Coffin is a type of box, is related to grave, is used for burying dead people”

Temporal Linguistic KnowledJe
“slur name: k*ke, slur description: From the Yiddish word for ’circle’ is kikel,
illiterate Jews who entered the United States at Ellis Island signed their names with
a circle instead of a cross because they associated the cross with Christianity.”

Table 3: Examples contained in each source by knowledge type.

knowledge, which would be the case of a RAG sys-
tem. We use the well-known format of the Stanford
Alpaca project to create the prompts.4

Vanilla Learning. We test popular in-context
learning strategies as (1) zero-shot learning (ZSL)
and (2) few-shot learning (FSL). For FSL we exper-
iment with 1, 3, and 5 randomly sampled examples
with equal probability among the classes to account
for class imbalance in the datasets. For robustness,
we run experiments 10 times, and report the aver-
age scores along with standard deviation. Thirdly,
we explore (3) instruction fine-tuning (IF).

Knowledge-Guided Learning. As texts in abu-
sive language research are usually short and lack
context (Bergen, 2016; Pérez et al., 2023), we hy-
pothesize we can overcome this issue by adding
contextual information directly in the prompts,
building on recent evidence that LLMs benefit
from including explicit information in the prompts
(Roy et al., 2023). To this end, we leverage pub-
lic knowledge bases, and refer to these prompts
as knowledge-guided prompts, which we pass to
the models via (4) zero-shot learning (KG) and
(5) instruction fine-tuning (KG-IF). We design our
knowledge-guided prompts as follows. To start, we
use the established Tsallis entropy to extract the
most salient words that constitute abuse in each
category of the datasets. Results in Table 8 of Ap-
pendix C suggest that online abusive language re-
lies on a combination of domain-specific language
such as slurs and pejorative adjectives, as well as
general concepts and entities. Therefore, we se-
lect the following open-source, easily accessible,
and manually curated knowledge bases: Knowl-
edJe (Halevy, 2023) as it uniquely covers temporal
linguistic knowledge in the hate speech domain,
ConceptNet (Speer et al., 2017) for commonsense

4https://github.com/tatsu-lab/stanford_

alpaca?tab=readme-ov-file#data-release

reasoning as it is designed to help computers un-
derstand the meanings of words that people gen-
erally use, and Wikipedia (Wilkinson and Huber-
man, 2007) and Wikidata (Vrandečić and Krötzsch,
2014) for encyclopedic knowledge as they encom-
pass a wide range of topics5. Examples contained
in each source are shown in Table 3. Following, we
link each instance of the datasets to these knowl-
edge sources by means of a knowledge-specific
trained entity linker6, which first detects the en-
tities mentioned in the text, and then links them
to their corresponding information in the knowl-
edge base. For instance, in the text “What place
do black people like to be peaceful? In their coffin.”
the commonsense entity linker would recognize
‘coffin’ as an entity, and would link the text to the
information about ‘coffin’ contained in ConceptNet
(Table 3). Note that the same text can be linked to
multiple knowledge sources. Lastly, we add this
linked information directly in the prompt via an
additional field called ‘context’ that we pass before
the input text and we ask the model to follow the
instruction described in the prompt based on this
context. Thus, the vanilla and knowledge-guided
prompts differ only by this additional field. See
Appendix C for details.

3.3 Experimental Setup

Models. We use different open-source LLMs: the
base versions of FLAN-Alpaca (Bhardwaj and Po-
ria, 2023; Taori et al., 2023), FLAN-T5 (Chung
et al., 2022), mT0 (Muennighoff et al., 2023),
and the 7B foundational model Llama-2 (Touvron
et al., 2023b,a). As summarized in Table 4, Llama-
2 is the only model under analysis which has not

5Due to the context window’s length in the prompts, we
use Wikidata when combining multiple knowledge types, and
Wikipedia when considering encyclopedic-only.

6If available, we use the API provided by the knowledge
source; the knowledge-specific spaCy wrappers otherwise.
https://spacy.io/

https://github.com/tatsu-lab/stanford_alpaca?tab=readme-ov-file##data-release
https://github.com/tatsu-lab/stanford_alpaca?tab=readme-ov-file##data-release
https://spacy.io/


been instruction fine-tuned nor toxicity fine-tuned.
For this reason, we used instruction fine-tuning
with Llama-2, and not with the other models.

Model Instruction
Fine-tuned

Toxicity
Fine-tuned

FLAN-Alpaca ✓ ✓
FLAN-T5 ✓ ✓
mT0 ✓ ✗
Llama-2 ✗ ✗

Table 4: Summary of the models used.

Baselines. We report classification performance
of popular commercial tools, either specifically de-
veloped for toxicity detection as Perspective API7,
or for general purposes as the OpenAI’s GPT mod-
els (Brown et al., 2020; Ouyang et al., 2022).

Evaluation Metrics. (a) Detection: we use
macro F1 to evaluate LLMs in distinguishing be-
tween three classes of offensiveness and expressive-
ness, and Wilcoxon’s signed rank test (Wilcoxon,
1992) to evaluate the statistical significance of
the results, setting alpha = 0.01 as the signif-
icance level for the p-values. (b) Bias Mitiga-
tion: abusive language classifiers may produce bi-
ased predictions for specific identity groups (Zhang
et al., 2020; Sap et al., 2019; Davidson et al.,
2019). To measure such unintentional bias, we use
the established Generalized Mean of Bias (GMB)
(Mathew et al., 2021) to combine the per-identity
biases into one overall bias measure as Mp(ms) =

( 1
N

∑n
s=1m

p
s)

1
p where Mp is the pth power-mean

function, ms the bias metrics m for subgroup s
and N is the number of target groups. As for
ms, we select the background-negative subgroup-
positive Area-Under-the-Curve (AUC) developed
by Borkan et al. (2019). We set p = −5 as in
the original formulation. The score lies between
0 and 1, and the higher it is, the less biased the
model is. (c) Explanation Generation: we evalu-
ate how closely the LLM-generated explanations
match the groundtruth across six similarity metrics
due to the challenge of simultaneously assessing a
wide set of criteria (Sai et al., 2021; Reiter, 2018;
Novikova et al., 2017). Following established NLG
research (Sai et al., 2022; Celikyilmaz et al., 2020),
we choose BERTScore (Zhang et al., 2019) and
METEOR (Lavie and Denkowski, 2009) for seman-
tic similarity whereas we select BLEU (Papineni
et al., 2002), Google BLEU (Wu et al., 2016) and
ROUGE (Lin, 2004) for syntactic similarity. Addi-

7https://perspectiveapi.com/

tionally, we present an expert evaluation following
our expert study described in §4.

4 Expert Study

Given the subjective nature of abusive language,
which further challenges the evaluation of models,
we want to evaluate how well LLMs align with
human judgements in this domain. We design a
survey consisting on four parts, which focus on
different areas: (1) the participant’s background,
e.g., gender identity, native language; (2) abusive
language detection: given a sample of texts from
the datasets we ask participants whether the texts
are correctly classified and if not, why; (3) ex-
planation generation: given a classification and
explanation, participants are asked if the text is
correctly classified and are asked to rate three dif-
ferent LLM-generated explanations with respect to
the groundtruth in a 1-3 scale; (4) general opinions
related to explanation generation, e.g., what type
of errors the participants observed most frequently.
See Appendix F for the full list of questions. The
institutional ethical board of the first author’s uni-
versity approved our study design. We distributed
the survey through channels that allow us to tar-
get individuals working in AI who are competent
in the field of language models and/or AI Ethics,
including NLP reading groups and AI Ethics inter-
est groups. We collected a total of 4,101 answers
from 15 participants, of which 33% (67%) iden-
tify as female (male), and 33% (67%) are (non-)
English native-speakers. Participants’ continent
of origin include Europe (60%), Asia (26.67%),
Africa (6.67%), and Latin America (6.67%).

5 Results and Discussion

Our experiments with knowledge-guided learning
are statistically significant (p < 0.01), see details in
Appendix E. We discuss our findings across perfor-
mance, bias mitigation, and explanation generation.
Then, we discuss our error analysis.

5.1. Detection. Table 5 shows the performance
of LLMs on offensiveness (HateXplain) and expres-
siveness (Implicit Hate) detection tasks across five
learning strategies.8 Overall, zero-shot learning on
LLMs performs poorly at distinguishing three dif-
ferent levels of offensiveness and expressiveness,
with an average macro F1 score of 31.65% and

8Here, we use three examples for FSL, and all three knowl-
edge types for KR and KR-IF.

https://perspectiveapi.com/


25.78%, respectively. Which in-context learning
strategy is the most effective seems to depend on
the type of LLM rather than the task itself. In-
struction fine-tuned LLMs which have been previ-
ously fine-tuned for toxicity detection, like FLAN-
Alpaca and FLAN-T5, benefit the most from few-
shot learning (FSL). On the other hand, instruc-
tion fine-tuned LLMs which have not been fine-
tuned for toxicity detection, like mT0, reach the
best scores using a knowledge-guided learning
strategy (KG). In other words, LLMs like mT0
need external knowledge to effectively learn to
distinguish multi-class abusive language, whereas
FLAN-Alpaca and FLAN-T5 can count on their dis-
tributional knowledge, and need as many as three
lexical clues to effectively guide their decision-
making process. This distinct pattern can be ob-
served in both detection tasks and for various set-
tings of few-shot learning as depicted in Figure
1. While FLAN-Alpaca’s and FLAN-T5’s perfor-
mance increases as soon as we pass one example,
mT0’s performance drops immediately. As for fine-
tuning strategies, instruction fine-tuning Llama-2
with external knowledge (KG-IF) leads to better
performance on multi-class expressiveness detec-
tion while being comparable to vanilla instruction
fine-tuning (IF) for multi-class offensiveness (Ta-
ble 5). We argue that this behaviour can be justified
by the need for more knowledge and reasoning
in distinguishing implicit hate, which comprises,
among others, stereotypes (Sanguinetti et al., 2018;
Warner and Hirschberg, 2012), irony (Justo et al.,
2014), and inferiority language (Nielsen, 2002),
which are not easily captured with vanilla instruc-
tion fine-tuning.

We further investigate which type of knowledge,
or combination thereof, LLMs need the most to
tackle multi-class abusive language detection tasks
in Table 6. Building from this table, Figure 2
presents the average percentage increase in per-
formance when using knowledge-guided zero-shot
learning over vanilla zero-shot learning, paired
with the percentage of data linked to each knowl-
edge type. Although all three knowledge types im-
prove performance, temporal linguistic knowledge
is notably associated with the highest performance
gains while covering less than 10% of the datasets.
This result suggests a preference towards quality
over quantity. Although encyclopedic and com-
monsense knowledge help cover more scenarios,
they contain general information. Instead, tem-
poral linguistic knowledge adds precise informa-

tion about words, definitions and events, for which
LLMs’ distributional knowledge is not sufficient.

Figure 1: Average macro F1 and standard deviation over
10 runs by number of few-shot examples.

5.2. Bias Mitigation. Columns ‘GMB’ in Ta-
ble 5 show the Generalised Mean of Bias, where
the higher the score, the less biased the model is.
Overall, LLMs exhibit low scores for bias mitiga-
tion with zero-shot learning, reaching an average
GMB of 51.13%. We observe the same distinct pat-
tern with in-context learning strategies between
LLMs which have been toxicity fine-tuned and
those which have not as in §5.1. The former are the
least biased when they are prompted with few-shot
examples whereas the latter become the least bi-
ased when prompted with external knowledge. Re-
markably, we show that few-shot learning actually
increases bias in mT0. We argue this is due to the
fact that the model, which has not been previously
fine-tuned for toxicity detection, learns to over-rely
on the lexical clues passed in the few-shot exam-
ples, resulting in biased lexical overfitting. As for
fine-tuning strategies, we show that further instruc-
tion fine-tuning Llama-2 helps NLP bias mitigation
metrics by at least 42.62%, consistently with previ-
ous research of Chung et al. (2022). Notably, we
demonstrate that adopting a knowledge-instruction



Model Approach HateXplain Implicit Hate
ZSL FSL KG IF KG-IF F1 GMB↑ F1 GMB↑

FLAN-Alpaca
✓ 32.89 53.73 25.90 49.20

✓ 36.46 57.95 37.21 57.37
✓ 35.07 56.42 26.43 50.00

FLAN-T5
✓ 44.50 57.54 25.48 50.00

✓ 46.00 59.22 34.88 50.76
✓ 44.53 58.28 30.15 50.65

mT0
✓ 21.60 51.59 28.36 44.00

✓ 22.99 46.75 25.99 40.05
✓ 27.98 52.84 32.69 52.70

Llama-2
✓ 27.65 51.49 23.38 51.49

✓ 68.59 77.00 50.49 69.87
✓ 68.24 77.06 56.69 75.13

Perspective API ✓ 34.80 - 37.10 -
GPT-3.5-turbo ✓ 39.00 - 32.00 -
text-davinci-003 ✓ 45.00 - 36.00 -

Table 5: Macro F1 and Generalised Mean of Bias (GMB) across zero-shot learning (ZSL), few-shot learning (FSL),
knowledge-guided ZSL (KG), instruction fine-tuning (IF) and knowledge-guided instruction fine-tuning (KG-IF).
Best results are in bold. Baselines at the bottom, including Roy et al.’s (2023)’s results for OpenAI models.

Model Knowledge Source HateXplain Implicit HateEnc. Com. T. Lin.

FL
A

N
-A

lp
ac

a

✓ 34.71 26.52
✓ 34.46 26.29

✓ ✓ 34.33 26.30
✓ 35.11* 26.50

✓ ✓ 34.94 26.52
✓ ✓ 35.07 26.29

✓ ✓ ✓ 35.07 26.43

FL
A

N
-T

5

✓ 45.59** 31.18
✓ 44.89 32.20

✓ ✓ 45.10 32.25**
✓ 44.46 31.51

✓ ✓ 44.51 31.56
✓ ✓ 44.60 32.20

✓ ✓ ✓ 44.53 30.15

m
T

0

✓ 26.92 33.26
✓ 27.38 31.65

✓ ✓ 28.43** 30.42
✓ 27.09 34.28**

✓ ✓ 28.20 33.04
✓ ✓ 27.53 31.61

✓ ✓ ✓ 27.98 32.69

Table 6: Macro F1 of knowledge-guided zero-shot learn-
ing strategy (KG) across encyclopedic (Enc.), common-
sense (Com.) and temporal linguistic (T. Lin.) knowl-
edge. For each model, best knowledge is in bold and
with (single) double asterisk if statistically significant at
the alpha level of (0.05) 0.01.

fine-tuning strategy rather than vanilla instruction
fine-tuning further improves bias mitigation across
offensiveness and expressiveness detection tasks.
A possible explanation is related to the exposure
of the LLMs to diverse and reliable knowledge
sources, enabling contextual awareness, and reduc-
ing the risk of biased lexical overfit.

In addition to this bias analysis based on an ag-
gregated metric, we conduct a fine-grained analysis
across targeted groups to investigate which groups
benefit the most from our knowledge-guided strat-
egy and whether the improvement on the power-
mean comes with trade-offs on certain groups. As
shown in the top row of Figure 3, our knowledge-

Figure 2: Scatter plot on average performance increase
of KG-ZSL and data coverage by knowledge type.

guided instruction fine-tuning strategy does not neg-
atively impact any targeted groups in both offen-
siveness (HateXplain) and expressiveness (Implicit
Hate) detection tasks; with higher gains in mitigat-
ing bias in the latter. The second row depicts the
improvement in mitigating bias with knowledge-
guided zero-shot learning, which positively impacts
all targeted groups but ‘women’ and ‘Caucasian’ in
HateXplain and all categories in Implicit Hate.

5.3. Explanation Generation. In Figure 4 we
report scores of six distinct metrics to evaluate ex-
planation generation by LLMs across five learning
strategies on offensiveness and expressiveness de-
tection tasks. In-context learning strategies as few-
shot learning and knowledge-retrieval do not pro-
vide any consistent nor significant improvements
to LLMs in generating explanations that are se-



Figure 3: Fine-grained analysis of BNSP bias metric across target groups in HateXplain and Implicit Hate datasets.

mantically and syntactically aligned with struc-
tured groundtruth in both tasks. The higher scores
for semantic similarity metrics like BERTScore
and METEOR with respect to syntactic similarity
metrics show the difficulty in generating syntacti-
cally structured explanations without instruction
fine-tuning, highlighting the challenging free-text
nature of LLMs in text generation. As for fine-
tuning strategies, knowledge-guided instruction
fine-tuning LLMs clearly generates semantically,
syntactically better explanations that are, on aver-
age, 48.76% more aligned with expert judgement
over vanilla instruction fine-tuning.9 By being fine-
tuned both on examples of structured explanations
and external knowledge sources, LLMs learn to
generate structured explanations that are relevant
to the text while being coherent with human rea-
soning and understanding.

5.4. Error Analysis. We show the most common
errors made by LLMs for abusive language detec-
tion and explanation generation (Table 7) accord-
ing to our expert survey. LLMs seem to suffer the
most from biased lexical overfit as the presence of

9We compute the percentage change of expert eval scores
between vanilla instruction fine-tuning and knowledge-guided
instruction fine-tuning, averaged between the two datasets.
From Figure 4, 1

2
( 85.06−56.32

56.32
+ 72.41−49.43

49.43
)100 = 48.76%.

sensitive words (e.g., ‘gay’) or slurs not used offen-
sively (e.g, reclaimed slurs) accounts for 22.57%
of the errors made when classifying abusive lan-
guage. Following, the presence of stereotypes and
strong, violent claims in the texts triggers the mod-
els into non-abusive misclassification, in 17.90%
and 14.01% of the errors, respectively. As for ex-
planation generation, 26.67% of participants in the
survey reported that logical errors are the most
common, i.e., the explanations are not logically or
smoothly connected or contain contradictory state-
ments. Notably, 13.33% of the experts surveyed
reported that explanations generated by LLMs re-
flect cultural bias. This poses a real challenge in
safely adopting LLMs in our scenario, for which
we provide a set of recommendations in §6. Our 15
participants reach a fair agreement in both classifi-
cation and explanation, with Krippendorff’s alpha
(Krippendorff, 2011) equal to 23.43% and 38.43%,
respectively.

6 Conclusions

In this work, by extensively investigating multi-
ple LLMs across five learning strategies we have
demonstrated that LLMs’ implicit knowledge with-
out an accurate learning strategy is not suitable
for effectively capturing multi-class offensiveness



Figure 4: Evaluation metrics on explanation generation. The greener, the more similar to the groundtruth.

Error Category Relative Frequency (%)
Sensitive words 22.57
Stereotype 17.90
Strong claim 14.01
Indirect offense 10.89
Ambiguity 9.34
Irony 6.61
Self-deprecating 5.45
Other 13.23
Logical Errors 26.67
Vagueness 20.00
Cultural Bias 13.33
Hallucination 13.33
Irrelevant Info 13.33
Other 6.67

Table 7: Errors in Detection (first block) and Explana-
tion Generation (second block).

and expressiveness detection nor for explanation
generation. Therefore, we recommend NLP re-
searchers and practitioners to (1) consider the type
of LLM when choosing the learning strategy to
adopt as we identified a distinct pattern for multi-
class abusive language detection, and (2) avoid
using LLMs for hateful content moderation unless
they have been specifically instruction fine-tuned
for it since their explanations are not structured as
they should (Mishra et al., 2019) and contain poten-
tially offensive cultural bias. While few-shot learn-
ing helps detection and bias mitigation of LLMs
that have been previously fine-tuned for toxicity
detection, we have shown that few-shot learning ac-
tually harms performance and bias of their counter-
parts. These models instead benefit the most from
external knowledge. We further proposed a novel,

easy and open-source knowledge-guided learning
strategy to explicitly leverage external knowledge
for in-context learning and instruction fine-tuning
LLMs. Building on this, we shed light on which
type of knowledge LLMs need, and we release the
knowledge-Guided version of Llama-2 for multi-
class abusive language detection and explanation
generation. Our GLlama Alarm has been instruc-
tion fine-tuned both on structured explanations and
encyclopedic, commonsense and temporal linguis-
tic knowledge. As a result, it generates structured
explanations that are relevant to the text and on av-
erage 48.76% more aligned with human judgment
than vanilla instruction fine-tuning, as confirmed
by our expert survey. We hope our study will in-
form and fuel more research towards using LLMs
in online abusive language research effectively and
responsibly.

7 Limitations

We are aware of the following limitations. (1) We
recognize online abusive language as a multilin-
gual problem. However, in this paper we priori-
tized generalizability in terms of multiple dimen-
sions of abusive language, multiple tasks, multiple
learning strategies and multiple knowledge sources
over multilingualism because resources for English
abusive language are easily available and well-
developed, providing a strong foundation to test our
knowledge-guided learning approach. Extending
to multilingualism is an interesting direction for fu-
ture work. (2) Besides being encoded in LLMs, bi-



ases can potentially come from the open knowledge
bases we use, which we try to mitigate by choosing
the free-access, manually curated, and regularly
updated ones. (3) We focused on 3-class classifi-
cation as a step to generalise from binary abusive
language detection, but did not investigate further
classes. (4) Current evaluation metrics for explana-
tion generation present several limitations based on
their specific characteristics, which we try to miti-
gate by examining multiple empirical metrics and
human expert judgments. For a detailed overview
of their limitations we refer the reader to Sai et al.
(2021); Reiter (2018); Novikova et al. (2017) and
to Di Bonaventura et al. (2024) for the challenges
in the domain of abusive language. (5) Instructing
LLMs to classify texts containing abusive language
can result in model’s refusal to engage with such
hateful content (i.e., safety refusals), which can
impact the performance as recently proved by Dön-
mez et al. (2024). We treated every output that was
not within the expected outputs as ‘non-hateful’,
and did not investigate model’s refusal. (6) We
tested GLlama Alarm on two popular corpora for
explainable hate speech detection, investigated its
bias, and performed statistical significance tests to
evaluate the confidence of our results, but future
work should explore more its generalisability in
the broad and complex domain of online abusive
language. For more discussion on responsible NLP
research, see Appendix A.
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A Responsible NLP Research

Ethical Consideration. We acknowledge that
abusive language detection can be a sensitive topic.
Therefore, we report our experiments in a responsi-
ble and appropriate manner. We used PrOf (Nozza
et al., 2023) to obfuscate potentially offensive con-
tent. Moreover, we did not collect any personal or
sensitive information, and we used publicly avail-
able datasets designed for abusive language detec-
tion in our experiments. Lastly, the application of
LLMs for automatic abusive language detection
should be done with caution. We exposed the limi-
tations of vanilla LLMs in detecting different forms
of hate, and their bias towards targeted groups.
With this study, we hope to move towards more
performing and fairer LLMs for abusive language
detection since these models are becoming more
and more used in various NLP tasks, including hate
speech detection (Yang et al., 2023; Hromei et al.,
2022; AlKhamissi et al., 2022).

Reproducibility. In addition to publicly release
the suite of GLlama-2 Alarm models, we will make
our code publicly available to ensure the repro-
ducibility of our experiments. Considering the sen-
sitive topic under study, we provide GLlama Alarm
with a model card, specifying training details and
intended use.

Environmental Impact. Experimenting with
LLMs can be computationally intense. We tried
to minimize these costs by choosing openly avail-
able LLMs and by using smaller versions of these
LLMs. Specifically, we use the base versions. For
prompting FLAN-Alpaca, FLAN-T5 and mT0 with
zero-shot learning, we used the default set of hy-
perparameters presented in Hugging Face, and we
ran our experiments on one machine equipped with
NVIDIA T4 Tensor Core GPU. For experiments
with Llama 2, either via prompting and instruction
fine-tuning, we used one machine equipped with
A100-64GB GPU.

B Dataset Details

We used popular publicly available corpora specif-
ically designed for hate speech detection and ex-
planation. We pre-process the data for each task as
follows.

Detection. Consistently with their intended
scope, we used HateXplain (Mathew et al., 2021)
for hate speech detection across multiple levels

of offensiveness (i.e., hate speech, offensive, neu-
tral), and Implicit Hate (ElSherief et al., 2021) for
hate speech detection across multiple levels of ex-
pressiveness (i.e., implicit hate, explicit hate and
neutral). After pre-processing the data, we have
19,229 instances for HateXplain and 21,479 for
Implicit Hate. Data are split into train, validation,
test sets following the proportion 80%, 10%, and
10%. To ensure comparability of our results, we
instruction fine-tune on the training set and test on
the test set while we use the test set for inference
with prompting.

Bias Mitigation. Additionally, these datasets
contain information about the targeted groups to
which the text refers (e.g., women, black people),
which is needed for the bias analysis. While Hat-
eXplain provides a fixed set of targets for hateful,
offensive and neutral texts, Implicit Hate provides
this information only for the texts labelled as con-
taining implicit hate. Moreover, this information is
reported in natural language in Implicit Hate. To
reproduce a fixed set of possible targets for Implicit
Hate, we mapped each of the manually reported tar-
get category in the dataset to a macro category (e.g.,
‘Whites’, ‘whites’, ‘white people’, ‘White people’
were all associated to the macro category ‘White’).
For both datasets, we first identify the subset of
targets that were present more than 20 times in the
test data, resulting in eleven target groups for Hat-
eXplain and seven target groups for Implicit Hate.
To compute the Area-Under-the-Curve (AUC), we
merge ‘hate speech’ and ‘offensive’ into the ‘toxic’
label in HateXplain and ‘implicit hate’ and ‘ex-
plicit hate’ into the ‘toxic’ label in Implicit Hate.
Since Implicit Hate has target information only for
the label ‘implicit hate’, we could compute only
the Background Negative Subgroup Positive AUC
metric, which selects toxic posts that mention the
target group and neutral posts that do not mention
the target group, from the test set.

Explanation Generation. These datasets contain
structure-free explanations for words in the text that
constitute abuse (the token-level rationale in Ha-
teXplain) and the intent of the user (the implied
statement in Implicit Hate). We use this informa-
tion to create structured explanations for why a
certain text might be abusive in view of previous
research arguing the need for structured explana-
tions in hateful content moderation (Mishra et al.,
2019). We follow the following template: “Ex-
planation: it contains the following hateful words



(implied statement):” for abusive content in Hat-
eXplain (Implicit Hate Corpus) and “The text does
not contain abusive content.” for neutral content.

C Knowledge-Guided Prompts

We create knowledge-guided prompts that we use
in a zero-shot learning fashion (KG) and in instruc-
tion fine-tuning (KG-IF). We proceed in three steps.

1. Knowledge Bases Selection. First, we use
Tsallis Entropy of the shifterator package10 to re-
trieve the most salient words by abusive language
category, which we group according to the main
topics in Table 8. This table gives an overview of
what type of topics are discussed in online abusive
language. The knowledge bases are then selected
based on their coverage of these topics: KnowledJe
(Halevy, 2023) as it covers domain-specific knowl-
edge in the hate speech domain (e.g., slurs); Con-
ceptNet (Speer et al., 2017) for commonsense rea-
soning over general concepts; Wikipedia (Wilkin-
son and Huberman, 2007) and Wikidata (Vrandečić
and Krötzsch, 2014) for encyclopedic knowledge
as they encompass a wide range of topics (e.g. en-
tities).

2. Entity Linking. To extract relevant informa-
tion from these knowledge bases and link it to
the instances of the datasets, we use knowledge-
specific entity linkers. They are trained to detect
entities mentioned in the input texts, and then link
these entities to their relevant information stored in
the knowledge base. We use the following entity
linkers:

• Encyclopedic knowledge: we use Media Wiki
API11 to retrieve the Wikidata short descrip-
tion and the full Wikipedia description of the
entities.

• Commonsense knowledge: we use con-
cepCy12, which is the spaCy entity linker
developed for ConceptNet. We selected the
following relations: ‘isA’, ‘RelatedTo’, ‘Syn-
onym’, ‘FromOf’, ‘UsedFor’. As a quality
filter, we keep the top 10 results with node
weight greater or equal to 1.

10https://github.com/ryanjgallagher/
shifterator

11https://www.wikidata.org/w/api.php
12https://spacy.io/universe/project/

concepcy

Category Most salient words

Gender

Slurs: b*tch, wh*re, c*nt, sl*t, h*e
Pejorative adjectives: fat, ugly,
dumb
Body parts: d*ck, a*s
Pronouns: she, her

Miscellaneous

General concepts: violence, illegal,
holocaust, harassment, countries
Entities: immigrants, refugees,
queer, Muslims

Religion

Slurs: k*ke, muzzies, moslem,
muzrat, goyim, mudslime
General concepts: UK, Europe,
sharia, Islam, Israel
Entities: Jews, Muslims

Race

Slurs: n*gger, n*gga, n*gro, beaner,
ching, chong, w*tback, gook, spics,
sandnigger, sheboon
Entities: whites, Arabs, blacks,
Asians, African, Caucasians

Sexual Orientation

Slurs: f*ggot, faggotry, dykes
Entities: queer, gay, homosexual,
lesbian, h*mo
Pejorative adjectives: ugly, fat
Pronouns: you, your

Implicit Hate

General concepts: immigration,
law, illegal, heritage, race,
crime, country
Negation: n’t

Explicit Hate

Slurs: n*gga, faggots, n*gger,
negroes, commie, cuckservative,
sandniggers
Pejorative adjectives: fat, ugly,
stupid, filthy, retards

Table 8: Most salient words according to Tsallis entropy
by abusive category.

• Temporal Linguistic knowledge: we use
the entity linker released with KnowledJe
(Halevy, 2023).

Following the entity linking pipeline, Tables 10
and 11 report the percentage of instances in the
datasets we linked to each knowledge source for
HateXplain and Implicit Hate Corpus, respectively.

3. Prompts Creation. The information extracted
from these knowledge bases is then used to con-
struct the knowledge-guided prompts. Table 9
shows the two distinct templates we use in our
experiments: the standard vanilla prompt, and our
knowledge-guided prompt. The two templates dif-
fer for the ‘context’ that is passed in the knowledge-
guided version, containing the information ex-
tracted from the knowledge sources linked to the
text. The knowledge-guided prompts have an av-
erage length of 176 tokens and 168 tokens for, re-
spectively, Hatexplain and Implicit Hate.

https://github.com/ryanjgallagher/shifterator
https://github.com/ryanjgallagher/shifterator
https://www.wikidata.org/w/api.php
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Category Prompt Template

Vanilla

Below is an instruction that describes a task, paired with input text.
Write a response that appropriately completes the instruction.

Instruction: Classify the input text as list_of_labels, and provide an explanation.
Input text: text_to_classify.
Response:

Knowledge-guided

Below is an instruction that describes a task, paired with context and input text.
Write a response that appropriately completes the instruction based on the context.

Instruction: Classify the input text as list_of_labels, and provide an explanation.
Context: knowledge_source_linked.
Input text: text_to_classify.
Response:

Table 9: Details of vanilla and knowledge-guided prompts used in our experiments.

Knowledge Tot Hate Off Neu
Enc. 25.81 26.96 24.84 25.62
Comm. 21.0 26.4 22.12 16.12
T. Lin. 8.47 18.23 4.05 4.15

Table 10: Percentage of data in HateXplain linked to ex-
ternal knowledge bases, by type of knowledge (i.e., En-
cyclopedic, Commonsense, Temporal Linguistic). Tot
refers to the entire dataset, whereas the remaining three
columns are label-specific (i.e., ‘hate speech’, ‘offen-
sive’ and ‘neutral’).

Knowledge Tot Imp Exp Neu
Enc. 26.69 28.5 29.02 25.53
Comm. 49.33 38.88 48.21 55.01
T. Lin. 5.32 4.34 4.22 5.94

Table 11: Percentage of data in Implicit Hate linked
to external knowledge bases, by type of knowledge
(i.e., Encyclopedic, Commonsense, Temporal Linguis-
tic). Tot refers to the entire dataset, whereas the remain-
ing three columns are label-specific (i.e., ‘implicit hate
speech’, ‘explicit hate speech’ and ‘neutral’).

D Model Details

We use the following publicly available in-
struction fine-tuned LLMs via Hugging Face:
flan-alpaca-base13, flan-t5-base14,
mT0-base15, and Llama-2-7b16. Following, we
briefly describe each model:

• FLAN-Alpaca (Bhardwaj and Poria, 2023): is
an instruction-tuned derivative of FLAN-T5,
further instruction fine-tuned on Alpaca (Taori

13https://huggingface.co/declare-lab/
flan-alpaca-base

14https://huggingface.co/google/
flan-t5-base

15https://huggingface.co/bigscience/
mt0-base

16https://huggingface.co/meta-llama/
Llama-2-7b

et al., 2023) dataset. The version we used has
220M parameters;

• FLAN-T5 (Chung et al., 2022): is an instruc-
tion fine-tuned derivative of T5 (Xue et al.,
2021) using the dataset FLAN (Wei et al.,
2021). The version we used has 220M pa-
rameters;

• mT0 (Muennighoff et al., 2023): is an instruc-
tion fine-tuned derivative of mT5 (Xue et al.,
2021) finetuned on xP3 dataset (Muennighoff
et al., 2023). Recommended for prompting
in English. The version we used has 580M
parameters;

• Llama 2 (Touvron et al., 2023b): is an updated
version of the foundational model LlaMA
(Touvron et al., 2023a), trained on a new mix
of publicly available online data. The version
we used has 7B parameters.

E Significance Tests

We test the statistical significance of our
knowledge-guided strategy using the Wilcoxon
signed-rank test (Wilcoxon, 1992). It tests the null
hypothesis that two related paired samples come
from the same distribution.

In Table 12, for each model we compare the dis-
tribution of the vanilla model with its knowledge-
guided (KG) counterpart. For FLAN-Alpaca,
FLAN-T5 and mT0, we compare the vanilla zero-
shot distribution vs. the knowledge-guided zero-
shot distribution. For Llama-2, we compare the
vanilla instruction fine-tuned distribution vs. the
knowledge-guided instruction fine-tuned distribu-
tion, i.e., GLlama Alarm. We test knowledge-
guided models using the combination of all knowl-
edge sources, i.e., encyclopedic, commonsense,

https://huggingface.co/declare-lab/flan-alpaca-base
https://huggingface.co/declare-lab/flan-alpaca-base
https://huggingface.co/google/flan-t5-base
https://huggingface.co/google/flan-t5-base
https://huggingface.co/bigscience/mt0-base
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https://huggingface.co/meta-llama/Llama-2-7b
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and temporal linguistic. The performance gains
and bias mitigation of our knowledge-guided strat-
egy are statistically significant at 99% (with p-value
p < 0.01) for all models except the instruction fine-
tuned Llama-2 in HateXplain, where knowledge-
enhancement does not yield any further improve-
ment over vanilla instruction fine-tuning for abu-
sive language detection.

Model HateXplain Implicit Hate
FLAN-Alpaca <0.01 <0.01
FLAN-T5 <0.01 <0.01
mT0 <0.01 <0.01
Llama 2 >0.01 <0.01

Table 12: P-values of the Wilcoxon signed-rank test
between vanilla and knowledge-guided models.

Moreover, in Table 13 we test the significance of
knowledge-guided learning with individual knowl-
edge sources rather than the combination of all
three sources. Building from the macro F1 scores in
Table 6, we compare the distribution of the model
enhanced with the type of knowledge leading to
the highest and lowest macro F1. There are statis-
tically significant differences across these knowl-
edge types: all models but FLAN-Alpaca in Im-
plicit Hate reach a statistically significant better
detection performance if enhanced with a specific
type of knowledge source.

Model HateXplain Implicit Hate
FLAN-Alpaca <0.05 >0.05
FLAN-T5 <0.01 <0.01
mT0 <0.01 <0.01

Table 13: P-values of the Wilcoxon signed-rank test
between knowledge-guided model enhanced with the
knowledge source leading to the highest and lowest
macro F1 according to Table 6.

F Expert Study Details

We show the questions we asked our participants
during the expert survey in Table 14.

G Model Card of GLlama Alarm

GLlama Alarm is a suite of knowledge-Guided
versions of Llama 2 instruction fine-tuned for non-
binary abusive language detection and explanation
generation tasks.

Languages. We instruction fine-tuned GLlama
Alarm on English.

Intended Use. GLlama Alarm is intended for
research use in English, especially for NLP tasks in
the domain of social media, which might contain
offensive content. Indeed, our suite was fine-tuned
to distinguish different levels of offensiveness and
expressiveness of abusive language, e.g. offen-
sive comments, implicit hate speech, which has
proven to be hard for many LLMs. In any case,
language models, including GLlama Alarm, can
potentially be used for language generation in a
harmful way, as pointed out in Rae et al. (2021).
GLlama Alarm should not be used directly in any
application, without a prior assessment of safety
and fairness concerns specific to the application.

Training Details. GLlama Alarm builds on top
of the foundational model Llama 2, which is an
auto-regressive language model that uses an op-
timized transformer architecture. Llama 2 was
trained on a mix of publicly available online data
between January 2023 and July 2023. We select the
base version of Llama 2, which has 7B parameters.
We instruction-funed Llama 2 on the following
datasets: HateXplain (Mathew et al., 2021) and
Implicit Hate Corpus (ElSherief et al., 2021), sep-
arately. These datasets contain publicly available
data designed for hate speech detection, thus en-
suring data privacy and protection. To instruction
fine-tune Llama 2, we created knowledge-guided
prompts following our paradigm. The template is
shown in Table 9. We instruction fine-tuned Llama
2 with 17 303 knowledge-guided prompts for Hat-
eXplain and 17 597 for Implicit Hate for 5 epochs,
while setting the other parameters as suggested by
Taori et al. (2023).



Part Questions

Background

“Which gender do you identify as?”
“Are you an English native-speaker?”
“What is your country of origin?”
“What is your level of expertise on language models or abusive language?”
“How useful would you rate a system that provides you a textual explanation for its classification
with respect to receiving only its classification?”
“How trustworthy would you rate a system that provides you a textual explanation for its classification
with respect to receiving only its classification?”

Classification “Do you think the text is correctly classified?”
“If not, why?”

Explanation

“Do you think explanation 1 provides a good explanation given the text?”
“If your answer was yes, does explanation 2 mean the same thing as explanation 1?”
“If your answer was yes, does explanation 3 mean the same thing as explanation 1?”
“If your answer was yes, does explanation 4 mean the same thing as explanation 1?”

Feedback

“Having seen these explanations, how useful would you rate a system that provides you a textual
explanation for its classification?”
“Having seen these explanations, how trustworthy would you rate a system that provides you a textual
explanation for its classification?”
“What was the main error you noticed in these explanations?”
“What do you think makes a textual explanation good?”
“Do you have any comment you would like to share?”

Table 14: List of questions asked in our expert survey.


