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Abstract. Knowledge graphs are important in human-centered AI because of their
ability to reduce the need for large labelled machine-learning datasets, facilitate
transfer learning, and generate explanations. However, knowledge-graph construc-
tion has evolved into a complex, semi-automatic process that increasingly relies on
opaque deep-learning models and vast collections of heterogeneous data sources to
scale. The knowledge-graph lifecycle is not transparent, accountability is limited,
and there are no accounts of, or indeed methods to determine, how fair a knowl-
edge graph is in the downstream applications that use it. Knowledge graphs are
thus at odds with AI regulation, for instance the EU’s upcoming AI Act, and with
ongoing efforts elsewhere in AI to audit and debias data and algorithms. This paper
reports on work in progress towards designing explainable (XAI) knowledge-graph
construction pipelines with human-in-the-loop and discusses research topics in this
space. These were grounded in a systematic literature review, in which we studied
tasks in knowledge-graph construction that are often automated, as well as common
methods to explain how they work and their outcomes. We identified three direc-
tions for future research: (i) tasks in knowledge-graph construction where manual
input remains essential and where there may be opportunities for AI assistance; (ii)
integrating XAI methods into established knowledge-engineering practices to im-
prove stakeholder experience; as well as (iii) evaluating how effective explanations
genuinely are in making knowledge-graph construction more trustworthy.
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1. Introduction: Raising Concerns of Knowledge-Graph Transparency

To reach its potential, AI needs data and context. Without the right (amounts of) data,
machine learning (ML) cannot identify patterns or make predictions. Without a deeper
understanding of context, AI applications cannot engage people in a meaningful way.
Knowledge graphs (KGs) [37], a term coined by Google in 2012 to refer to its general-
purpose knowledge base, are critical to both: they reduce the need for large labelled ML

1Corresponding Author: Bohui Zhang, Email: bohui.zhang@kcl.ac.uk.



February 2023

datasets, facilitate transfer learning, and generate explanations [106]. KGs are routinely
used alongside ML in many applications, including search, question answering, recom-
mendation [37] and, in industry contexts, enterprise data management, digital twins, sup-
ply chain management, procurement, and regulatory compliance [89].

As AI applications produce and consume more data, engineering KGs has evolved
into a complex, semi-automatic process that increasingly relies on opaque deep-learning
models and vast collections of heterogeneous data sources to scale to graphs with mil-
lions of entities and billions of statements [104,119]. The KG lifecycle is not transparent
[121], accountability is limited, and accounts of how biased a KG is [1] or how fair in
the downstream applications that use it [29] are patchy. KGs are thus at odds with AI
regulation, for instance the EU’s upcoming AI Act,2 and with ongoing efforts elsewhere
in AI to systematically audit and debias data and algorithms [11,19,38,71,78].

Regulators take a risk-based approach to the use of AI, prescribing, among other
things, transparency and accountability obligations for different classes of AI applica-
tions. Organisations using KGs, either directly as data infrastructure, or as graph embed-
dings in ML models, will face challenges unless they can document and attest that their
KGs are compliant with the law. Furthermore, when a KG is part of an AI application
that counts as high-risk, that application will have to undergo conformity assessments
both at design and at run time. KGs themselves are meant to make ML models explain-
able [106] and hence facilitate such compliance tasks, but that would imply that the KG
lifecycle abides by the same rules.

We argue that this is not yet the case. With this paper, we would like to advance the
vision of trustworthy KG engineering to allow KG stakeholders to rely appropriately
on AI algorithms and use KGs with confidence [50]. For this to happen, we need to first
gain a better understanding of emerging knowledge-graph construction (KG construc-
tion) practices in the era of ML-as-a-service and develop human-in-the-loop approaches
to ensure transparency and accountability throughout the KG lifecycle. This applies to
both proprietary KGs used within organisations [89] and publicly available KGs like
Wikidata [110], DBPedia [5], YAGO [102], ConceptNet [98], which are extensively used
by researchers and practitioners. As AI laws and regulations enter into force, the trust-
worthy credentials of such KGs will have to be systematically assessed and documented.

Our paper follows from recent work that explored emergent neuro-symbolic AI ar-
chitectures from a system-design perspective. Van Bekkum et al. [109] proposed a taxon-
omy of hybrid (i.e., learning and reasoning) systems and discussed common architecture
patterns and use cases. Building on their insights, Breit et al. [14] carried out a compre-
hensive literature review to add details to those patterns in terms of inputs, outputs, pro-
cessing units, types of ML models and their training, types of knowledge representation
and reasoning, but also transparency and auditability. One of their main findings was that
most system designers do not consider these latter aspects at all, or, when they do, that
they do not evaluate them sufficiently. A third paper by Tamašauskaitė and Groth [104]
drew from a survey of system papers to define a canonical KG construction process.
Our work continues where they left off: starting from their KG construction process, we
follow one of their main recommendations to map tools and techniques for each step to
provide additional guidance to researchers and developers. We analyse the KG lifecy-
cle to identify tasks are are commonly automated with AI and those which still require

2https://artificialintelligenceact.eu/
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human input and oversight and could potentially benefit from AI assistance. In parallel,
we survey the state of the art in explainable AI (XAI) to inform the design of XAI ap-
proaches that are genuinely useful for KG stakeholders such as knowledge engineers,
subject domain experts, and users. Our main findings are:

1. There are tasks in KG construction, for instance knowledge acquisition, where
automation3 is routinely used with promising results. At the same time, there are
opportunities to use AI to assist other tasks such as ontology reuse, ontology evo-
lution, ontology evaluation, documentation etc, where (the latest) AI capabilities
have remained under-explored.

2. While tasks around knowledge acquisition, taxonomy building, and data inges-
tion are often automated, human oversight is still needed to improve performance,
establish trust, or comply with the law. In our review we found little evidence of
integration of AI capabilities, no matter their level of interpretability, into stan-
dard knowledge-engineering tools and practices. Furthermore, our understand-
ing of human-in-the-loop KG construction remains limited, with implications for
user experience.

3. Comprehensive evaluations of XAI methods are lacking, with most studies fo-
cusing on simple ML models in lab settings, with mixed results [73,97,116]. The
KG community, just like elsewhere in AI, needs to gain a better understanding
of how people react to and use explanations to build trust and boost technology
adoption.

Based on these findings we propose several directions for future research, drawing
on theory and insights from AI, but also human-AI interaction [3], interactive ML [28],
and social computing [84,93]. These include: (i) AI assistants for overlooked tasks in the
KG lifecycle; (ii) end-to-end tools supporting automated KG construction with human-
in-the-loop with built-in advanced, explainable AI capabilities; as well as (iii) holistic
evaluation frameworks that assess the extent to which explanations genuinely help hu-
mans engineer better KGs.

2. Background: Knowledge Engineering, Knowledge Graphs, and Transparency

Knowledge engineering, the branch of AI concerned with building and managing
knowledge-based systems [87,100], has changed dramatically with the latest innovations
in machine learning, natural language processing, and computer vision. And yet, as the
most recent advances in large language models and generative AI demonstrate, the ques-
tion of how to capture and encode domain knowledge into a computational representa-
tion remains as challenging as ever [85]. The technologies and end-user tools to support
core knowledge-engineering tasks such as knowledge acquisition have advanced signifi-
cantly to meet the scale requirements of modern KGs [131]. At the same time, the most
effective approaches to knowledge representation still require human oversight at various
levels [94,95], but increasingly human input is in the form of augmenting or validating
algorithmic suggestions [104].

3In this paper we use AI assistance and automation interchangeably. While we acknowledge that not all
automation in KG construction is AI, we argue that the use of AI brings about specific challenges with respect
to transparency, accountability etc.
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Knowledge graphs are just one of the latest manifestation of knowledge engineering,
alongside property graphs [4], and before them ontologies [44] and knowledge bases
[46]. They use a schema or ontology to organise data and reason over it to infer new
facts and flag inconsistencies [37]. While there are various knowledge-graph definitions,
most agree on the following attributes, which distinguish them from technologies like
relational databases and semantic networks: first, data is organised in a directed, labelled
graph. Nodes are entities of interest in a domain and their abstract classes. Edges stand
for relationships and attributes between them. Like classes, relationships and attributes
can be arranged in a taxonomy. They can also have features like transitivity, domain or
range restrictions, etc. Second, graph labels have well-defined meanings for program-
matic use in data validation and reasoning. Nodes and edges are accessed through unique
identifiers such as web URIs. Many KG representational languages exist, each with its
own formal semantics and syntax (e.g., W3C RDF4, RDFS5). Finally, KGs are general-
purpose knowledge bases, meant to be used by multiple applications. They evolve to ac-
commodate changes in the domain, data, and user requirements. In KG engineering, it
is best practice to reuse external ontologies and define links from one KG to another to
speed up development and facilitate data interoperability.
Transparency as an AI design principle stands for the need to clearly document and
explain how an AI system makes decisions, how the data is collected, used, and gov-
erned, and how the system is evaluated and audited [27,42,47]. One of the key mecha-
nisms to achieve transparency is explainability of ML models. While some ML models
such as decision trees could be considered interpretable by design, others such as large
language models are too complex for people to comprehend in the same way. Within
the context of trustworthy AI, researchers and practitioners have proposed many XAI
frameworks, guidance, standards [88], techniques [57,77], and evaluation metrics [35]
for various models. Among them, some suggested to use KGs to generate explanations.
By exploring paths in KG and formatting them into natural language justification, Silva
et al. [92] inject interpretability into text entailment system. Another example is for com-
puter vision, where Wang et al. [115] distill information from both word embeddings and
knowledge-graph representations for zero-shot recognition.

3. The KG Lifecycle

Building on the process from [104], Figure 1 shows an exemplary KG construction
pipeline with a mix of automated and manual capabilities and contributions from sev-
eral stakeholder groups: knowledge engineering and machine learning specialists, sub-
ject domain experts, online volunteers and crowdsourcing services, as well as developers
of applications using KGs.

As the figure suggests, KGs are interacting with AI capabilities in complex ways.
On the left (1), multiple data sources, structured and unstructured, are lifted into KGs
using ML for named entity recognition [128], relation extraction [54], entity reconcilia-
tion [90], link prediction [80] and many others. The ontology organising the KG can be
provided upfront or derived from the data itself, depending on whether there is a clear
domain or available structured data with predefined types of entities and relations [104].

4https://www.w3.org/RDF/
5https://www.w3.org/TR/rdf-schema/
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Figure 1. The KG lifecycle.

In this context, [121] discusses the need for more transparency with respect to data prove-
nance and currency; both can affect whether application developers will be able to use the
KG with confidence as a source of reliable, complete, unbiased, up-to-date information.
The result of knowledge acquisition is shown in the middle of the figure (2), where KGs
are often linked to third-party data, reuse standard ontologies and identifiers, and are en-
coded as RDF, JSON or other formats. On the right-hand side of the figure (3), there is a
selection of use cases for KGs alongside other forms of AI. KGs are used as knowledge
bases to query and reason upon, for instance in search [120], question answering [16,32],
or recommendation [140]. Information can be obtained from a graph through deductive
(e.g., logical rules) and inductive methods (e.g., as continuous graph embeddings) [37].
Both methods need to be transparent to the user [13,81] to be trustworthy.

KG maintenance is prompted by source updates on the left (1), and requirements,
audits, and assessments on the right (3). Human-in-the-loop tasks (arrows in the figure
(4−6)) increasingly use ML models with varying levels of interpretability. Crowdsourc-
ing for supervising ML (bottom-middle of the figure) has similar transparency challenges
as the algorithms it complements. This is because the digital services commonly used for
this purpose e.g., Prolific, Mechanical Turk, are black-box, proprietary platforms with
limited means to replicate or reproduce results [74].

4. XAI in the KG Lifecycle

Following the discussion of the lifecycle, we carried out a PRISMA [70] literature re-
view on databases including ACM Digital Library, IEEExplore, ScienceDirect, arXiv,
SpringerLink, and Google Scholar. We searched for queries combining, on the one side,
keywords related to transparency (transparent, transparency, interpretable, interpretabil-
ity, explainable, explainability) and, on the other side, keywords related to KG construc-
tion (knowledge graph construct*, knowledge graph develop*, knowledge graph com-
plet*, knowledge graph refine*, knowledge graph reasoning, knowledge graph inference,
knowledge engineering) and tasks (named entity recognition, extract entities, relation
extraction, entity linking, entity matching, entity resolution, entity alignment, link pre-
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diction). The search took place from October to December 2022 and resulted in more
than 735 thousand hits. We then took the top 50 hits per query, which led to around four
thousand papers, with duplicates.6 We assessed relevance based on titles, abstracts, and
keywords first, and in a second step, reviewed the text of the paper to select only those
papers which proposed a solution to transparent KG construction, either as a whole pro-
cess or for individual tasks. We discarded papers that only mentioned transparency and
related concepts rather than putting forward a solution. The final corpus consisted of 84
papers. The papers were all published in the past ten years, which was to be expected
given the term ”knowledge graphs” was coined in 2012 and is inline with other recent
knowledge-graph surveys [86,104].

The authors classified the papers reviewed with respect to KG construction tasks
they addressed and their approach to explainability, starting with categories widely used
in the literature. For explainability we started with what is explained: local (data point) vs
global (outcome) and when: post-hoc (after prediction) vs self-explaining (while predict-
ing, or inherently interpretable). For post-hoc models, another layer of coding is added
for both local and global explanation methods to consider whether the XAI methods
are independent of the ML models or not: model-agnostic (can be applied to any ML
models) vs model-specific (explicitly designed for a specific (group of) model architec-
ture(s)). Finally, because we also checked the extent to which the solutions considered
human-AI interaction aspects, for instance by proposing specific affordances for people
to engage with the explanations in some way, as opposed to the explanation being merely
communicated to (an unspecified group of) users.

The result of the classification is presented in Table 1. At a glance, the papers we re-
viewed do not cover the entire KG lifecycle. Most papers are concerned with knowledge
acquisition via entity extraction (as a source of classes and instances in KGs) and relation
extraction (as a source of property classes, but more importantly connecting entities to
each other through properties), or with curation and maintenance via entity resolution
(consolidating the data that refers to the same entities) and link prediction (suggesting
missing or emerging facts). Besides the four tasks at the top of the table, we found one
paper dealing with the evolution of the KG schema or ontology [61] and another one
about detecting and explaining inconsistency in KGs [107]. We note that link prediction
was by far the most popular task, and that a majority of papers dealt with curation and
maintenance rather than building a KG for a particular purpose. This is somewhat con-
cerning, as many applications of KGs are in enterprise contexts, where the first step is
to build a computational representation of the enterprise’s data, which is stored across
various systems and modalities.

A second high-level observation is the balanced split in the chosen format for
the explanations. Methods based on input and generated features use attention weights
[41,141], words [49,52], attributes [8] etc. to generate explanations, which can be nu-
merical, textual, or visual. By contrast, methods based on human-understandable back-
ground knowledge provide rules, reasoning paths, and structured contextual information
as explanations. Given that we’re interested in explanations that are accessible to knowl-
edge engineers and subject domain experts, it would be interesting to evaluate if their
familiarity with knowledge representation and/or the subject domain impacts how use-

6The six platforms where we performed the search supported different query affordances. This means that
in some cases it was possible to build complex queries with multiple keyword options, whereas in others we
had to use separate queries to achieve the same results. We took the first 50 hits for each search query.
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Entity Extraction Relation Extraction Entity Resolution Link Prediction Others

Local
post-hoc

Model-agnostic

LEMON [8],
Minun [113]

Landmark [7],
CERTA [105],

Mojito [22]

Model-specific
LightEA [59],

HIF+KAT [130],
GMKSLEM [21]

XTransE [137], CPM [99],
Kelpie [81], CrossE [138],

KGInfluence [143],
GINN [40], SNS [39],

approxSemanticCrossE [18]

Local self-explaining

TMN [52],
BTPK [15],

AutoTriggER [49],
Instance-based [68]

[91],
D-REX [2],
SIRE [134],
SAIS [125],

NERO [141],
DISCO-RE [111],

SemRep [45],
LogiRE [82]

XINA [132],
RuleSynth [96]

GCNN w/ att [62],
T-GAP [41], TAGAT [117],

DisenKGAT [123],
IDEAL [133], ITCN [122]

[12], [136], AnyBURL [60],
xERTE [34], DRUM [83],

TITer [103], SAFRAN [67],
MINERVA [20], TLogic [55],
DeepPath [127], SLICE [114],
PATHCON [112], CogKR [25],

Gradient Rollback [48],
RNNLogic [76], CPL [30],

GPFL [31], CAKE [64],
R2D2 [36], RED-GNN [139],
HiAM [58], SparKGR [124],
[65], [142], RuleGuider [51],
RPJE [66], RuleDict [135],

[10], NTPs [79],
SQUIRE [6], LCGE [63]

Global
post-hoc

Model-agnostic ExplainER [26]

Model-specific Emboot [144] ProtoRE [24]
MGNN [17], CRIAGE [72],
ITransF [126], DensE [56],
HopfE [9], METransE [118]

Global self-explaining xER [108]
FTL-LM [53],

Neural LP [129]
[61],

Abstraction [107]

Human-in-the-loop [43]
SystemER [75],

TuneR [69]

Table 1. Overview of explainable knowledge graph construction methods. We add an additional class for
human-in-the-loop methods except for the four main categories.

ful knowledge-based explanations are compared to feature-based ones, which sometimes
require an understanding of machine learning. At the same time, explanations are gener-
ated in a different way for each of the four core KG construction tasks at the top of the ta-
ble. For entity and relation extraction, explanations often refer to contextual cues such as
triggers [49,52] and sentences [91]. Explanations for entity resolution tend to use entity
matching rules [69,75] and (ranked) attributes of the entity pair [8,26]. Finally, link pre-
diction methods use the topology and reasoning capabilities of the KG. Rule- and path-
based methods have become the majority format of explanations, achieved through ran-
dom walk-based methods [53,55], reinforcement learning [36,60,127], and perturbation-
based methods [72], etc.

There are very few papers considering human inputs or oversight, which are crit-
ical in trustworthy AI frameworks and guidance [23]. Human input in isolated cases
[43,69,75] often involves providing or revising rules for tasks like entity resolution. Fur-
thermore, most approaches have not been comprehensively evaluated. The majority of
methods (58 out of 84) do not perform evaluation or use informal evaluations by visual-
izing and commenting on a limited number of cases of explaining outcomes intuitively.
Only a few of them include user study (or human evaluation) and task-specific metrics.

5. Directions for Future Research

There are three directions for future research that follow from the review. First, going
back to prior literature on knowledge engineering methodologies [44,87,100,101], there
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are many tasks and activities where automation remains an exception. Aside from the
four tasks at the top of Table 1, there is an opportunity to think about other ways for AI
assistance to add value: for instance, one design principle of KGs is that they are meant
to integrate across multiple sources and be able to tackle evolving requirements. Reusing
existing schemas or ontologies can help with interoperability, but the task of finding or
assessing an ontology for reuse is still mostly manual. At the other end of the lifecycle,
documenting KGs can help with maintenance and reuse, and advances in generative AI
make it a chief candidate for automation. While we found a range of explainable link
prediction approaches, it would be useful to dive deeper into this sub-field to understand
the extent to which these different approaches solve common concerns around the qual-
ity of KGs. One difference between representing knowledge in a KG and a machine-
learning model is that a KG can provide guarantees about the validity of the information,
its provenance, its currency, etc. upon retrieval. However, this is predicated by KGs be-
ing regularly audited according these and other quality dimensions and improved. Link
prediction is one way to do this, alongside many others, e.g., debiasing [29]. Further-
more, while knowledge acquisition is generally well represented in the literature, a lot of
work focuses on text rather than other data modalities, which is a concern in many KG
application areas, e.g., enterprise data management (which needs to work with structured
data) or cultural heritage (where a lot of domain data is neither text nor numbers).

Second, as we noted earlier, the fewest of approaches look at the human-in-the-loop
aspects of KG construction, including human agency and oversight, feedback, etc [23].
While there is a lot of work in human-AI interaction and interactive ML in the HCI
community, they tend to focus so far on simpler ML models and different applications
that the knowledge production scenarios we are interested in. One exception is the work
on ORES [33], a participatory ML system used in Wikipedia and Wikidata (a large open-
source KG). However, the Wikidata KG construction process is quite unique because it
is community-based, with more than 24 thousand active contributors7 who receive AI
assistance for distinct tasks such as vandalism detection and consistency checks. We need
to follow their example to develop the same types of workflows and tools for other KG
construction scenarios - in most cases, these involve much smaller teams and different
tool environments. The majority of existing integrated development environments (IDE)
for KGs (e.g. PoolParty8, data.world9, Protégé10) assume KGs are mostly built manually,
with some basic automation to speed-up routine tasks like translating node labels or
creating documentation from node and edges descriptions. Large language models like
ChatGPT offer chances to develop novel KG editing tools and interactions, allowing
people to interact with their AI assistants via natural language and ensuring transparency.
Meanwhile, developers working with KGs require KG-related process blueprints that
utilize AI algorithms and adhere to AI regulations for creating downstream applications.

Thirdly, our review flagged the need for better evaluations, which encompasses met-
rics, benchmarks, and datasets, as well as toolkits and guidance for conducting stud-
ies that assess how effective the explanations supplied in KG construction tasks are as
proxies and enablers for transparent and hence trusted KGs.

7https://www.wikidata.org/wiki/Wikidata:Statistics
8https://www.poolparty.biz/
9https://data.world/
10https://protege.stanford.edu/

https://www.wikidata.org/wiki/Wikidata:Statistics
https://www.poolparty.biz/
https://data.world/
https://protege.stanford.edu/
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