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ABSTRACT
Manually transcribing music sheets is a time consuming task, and
it is therefore desirable to have a system that performs the task au-
tomatically. Optical music recognition (OMR) is a field of research
that investigates how to build such a system. The field has seen
many developments over the years, but the problem remains far
from solved. This research focuses on building a system capable
of automatically translating music scores written in early nota-
tion. While traditional methods perform symbol detection once,
this paper performs it twice. The first detection is carried out in
order to recognise the musical symbols, and the second to detect
the note heads. Doing so should achieve a greater performance in
recognising the notes. A novel approach is introduced by supplying
the process with knowledge about motifs derived from N-grams.
These N-grams form the patterns in pieces and are used to train a
Random Forest (RF) model. The output of the OMR system is then
parsed into the model in order to catch errors. The output of the
OMR system is then fed into the model in order to fill in missing
notes. Furthermore, a second approach is introduced, by means of
n-gram matching using a sliding window approach. In this paper,
both N-grams derived from a gold standard and from the output
from the OMR system are researched. While both approaches in
N-gram processing improve the system, a clear difference in perfor-
mance is not found, both using gold standard N-grams and those
derived from the OMR output. However, the N-grams derived differ
from each other heavily. This paper shows promises in not only
the usage of pattern recognition, but also in fully automating the
process of inserting knowledge into OMR systems.
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1 INTRODUCTION
Music analysis is a large part of the interdisciplinary field of Music
Information Retrieval (MIR) [6]. As its name implies, MIR aims to
retrieve information from music. Researchers in the field of MIR
have a great interest in the diversification of the music available,
for expanding their knowledge in music information. This is were
the technique of Optical Music Recognition (OMR) proves to be
essential. It is conceptually similar to Optical Character Recognition
(OCR). While OCR focuses on the retrieval of text, OMR looks at
music notation. The main benefit of applying OMR is that its aim
is to automatically process scores and give a machine readable
representations as output.

The work presented in this paper focuses on music scores writ-
ten in White Mensural Notation (WMN), the standard notation for
choral music in the Renaissance period. Mensural notation intro-
duced the duration of notes, in numerical proportions, based on
different shapes. Nowadays, this notation is no longer used to write
music. However, the existing scores are of such interest that it is
useful to transcribe them, either for performance or study, using
CommonMusic Notation (CMN). Digitization of these prints proves
very valuable for the online preservation of music, making them
available for a wide range of applications within music analysis. In
this paper, our musical piece of interest is an important prayer from
the Bible, Kyrie Eleison, due to its repeating nature. A characteristic
of this piece is that for the first number of iterations, the melody
is repeated up until the last line. On this last line, a variation is
used. The choice to use a variation near the end is for a smoother
transition into the following prayer, Gloria.

The aim of this paper is to develop an OMR framework that
leverages knowledge in motif repetition, based on machine learning
models and generating N-grams for building a predictive model.
The aim of the predictive N-gram model is to improve the machine
learning model in its task. Therefore the following two high level
research questions will be addressed:

• How does an object detection model perform in the task of
OMR in White Mensural Notation?

• What impact do N-grams that model motif repetition have
on the performance of the transcription?

The second research question can be divided into four sub-questions,
namely:
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• What impact do the N-grams, derived from the gold standard,
have on the performance of the model, using random forest
algorithm?

• What impact do the predicted N-grams, from the output of
the OMR tool, have on the performance of the model, using
random forest algorithm?

• What impact do the N-grams, derived from the gold stan-
dard, have on the performance of the model, using a sliding
window approach?

• What impact do the N-grams, derived from the output of the
OMR tool, have on the performance of the model, using a
sliding window approach?

This paper is organized in six sections. The paper begins with a
literature overview, showcasing the relatedwork in the field of OMR
and pattern recognition in section 2. The properties of White Men-
sural Notation are laid out in section 3. The next section (Section 4),
goes into detail on the general framework that earlier work mainly
followed. Then in section 5, the methods are discussed, including
the proposed framework of the software. Next the experimental
setup is presented in section 6. The results are presented in section 7,
and we discuss them in Section 8. Furthermore, the discussion will
suggest proposals for future work to improve the system. Finally,
the paper concludes by showcasing the key findings, in Section 9.

2 RELATEDWORK
In this section, an overview is provided for the work done in the
fields of OMR and pattern recognition.

2.1 OMR
The vast majority of research has been done on music written in
modern notations. Despite the differences between modern and
early prints, the work done on the former is of great importance
for the understanding the current developments in the field.

One such a tool, for the recognition of modern music notation, is
Gamut. Gamut, built on the Gamera framework [7], is based on the
use of K-Nearest Neighbours (KNN). Gamut relies on the removal
of staff lines in order to retrieve the pitch of the detected notes.
This step in preprocessing is performed by the MusicStaves toolkit,
which is also based on the Gamera framework.

An OMR tool specifically created to detect objects in early ty-
pographic print, is Aruspix [17]. Their method is based on the use
of Hidden Markov Models on the staff level. Aruspix foregoes the
use of staff-line removal, as it considers this phase to be difficult
and unreliable [18]. Another recognition tool for scores written
in White Mensural Notation was developed by [21]. Like Gamut,
this tool relies on the use of KNN. However, this tool assumes an
RGB relation to hold for non-musical symbols, as one of its stages
includes the removal of the frontispieces, which in their case was
colored.

Finally, MuRET [20] is an OMR tool designed to transcribe hand-
written scores in early notation. It holds the assumption that no
approach will lead to perfect transcription, and therefore human
intervention plays an integral role in this system.

2.2 Pattern Recognition
A lot of work has been done on retrieving musical patterns. Patterns
are defined as sequences of notes that occur together frequently
in a piece. For this application, the use of N-grams has proven
to be a reliable method of identifying the musical patterns [16].
The preferred method of constructing said N-grams is by means
of the sliding window algorithm. These sequences can be fully
dependent, semi-dependent or fully independent of the context. In
the first situation, the N-grams could be different depending on the
key signatures, for instance. One step closer to independence is to
take only into account the clef in which the pattern was detected.
Finally, a fully independent approach is to only look at the patterns
in terms of the relative position of the notes on the lines with
respect to the last note, represented as positive/negative integer
half-steps; instead of an absolute pitch representing each note. This
method yields true pitch invariant patterns, able to be extrapolated
to various pieces, independent of their key signature or clef (see
examples in Tables 2 and 3).

2.3 Data Sets
Not many data sets are available for early prints. The SEILS data
set [15] is one of the few to create such a data set. Their data set
contains Italianmadrigals from the 16th century, which are available
in a variety of representations. Aside from the original prints, the
project manually created modern representations of these pieces,
written in Lilypond, MIDI, and Music XML.

3 WHITE MENSURAL NOTATION
Music can be represented in various ways. While there exist many
similarities between WMN and CMN, there are some crucial dif-
ferences. The aim of this section is to display the properties and
present the modern representation when appropriate. An example
of WMN is shown in Figure 2.

The printed form of a musical work is called a score or sheet
music which consists of notes. Scores are made of staves, which
consist of the five lines and the spaces around them. The clefs of
interest, in this paper, are the alto, bass, tenor, and treble clefs.

The note length or duration is decided by the representation
of said note. The semi-breve corresponds to the modern whole
note. A breve is twice the length of the semi-breve. The minima,
semi-minima, fusa, and semi-fusa, respectively hold the note
values of a half, quarter, eighth and sixteenth of a whole note. Dots
extend the duration by half the original length.

Frontispieces are decorative illustrations at the beginning of
pieces.

The key signature designates that notes are to be played either
higher or lower than the corresponding notes. Most commonly it
is a set of either sharps or flats placed together on the staff, at the
beginning of a line, following the clef. They can appear also later
on, notable after a double bar line. The key signature applies up
until the end of the piece or up to the next key signature. The key
is either in the major or minor mode. The custos appears at the
end of the stave, and indicates on which line the following note on
the next stave will occur. No equivalent exists in modern notation.

The sign of congruence, or cadence point, indicates whether a
canon starts or ends.
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The corona (also known as Fermata) is a symbol that indicates
that a note is to be played longer beyond what is written. Unclear
is how much longer it should be played, and therefore is up to
the performer to decide. The most common interpretation is to
play a note twice as long. Time signatures appear at the beginning,
following the clef and key signature, and specify the number of beats
contained in each bar. Rests are intervals of silence in music, marked
by symbols indicating their length. Each rest symbol corresponds
with a particular note value.

Finally the accidentals include the sharp, flat and natural
symbols. Accidentals are always precede the notes they affect. The
sharp raises the pitch by a semitone, while the flat lowers the pitch
by a semitone. The natural symbol undoes the effect of the other
accidentals as it reverts the notes back to the natural note.

4 GENERAL FRAMEWORK
Based on the the related work presented above, a general framework
is identified by [19], consisting of the following four phases.

(1) Preprocessing
(2) Segmentation
(3) Object Recognition
(4) Semantic Reconstruction

4.1 Preprocessing
First the input images need to be processed in order for them to
be usable in the following phases. Many methods exist for this
stage. Skew correction can be applied in order to straighten im-
ages. Background noise removal is also an important technique in
order to remain only with useful information. Some documents
may be unreadable, due to degraded conditions. This applies in
particular to early prints. These images can be subjected to contrast
enhancement techniques.

4.2 Segmentation
This stage aims to extract the symbols and their position from the
processed music sheet. This process starts with the extraction of
sub-images from the main image. These images represent the music
staves. Next, these images are subjected to the object segmentation
process. A divide exists in the importance of staff-line removal.
Some articles consider them an important step in the segmenta-
tion process [3, 17], while others prefer to remove them in favour
of noiseless object extraction [7]. In order to identify these lines,
retrieving horizontal projections is the method of choice in the
majority of tools. [4].

4.3 Object Recognition
Regardless of the method of segmentation chosen, object recog-
nition is applied on the symbols. To recognize which symbol is
displayed, a model must be trained on instances. The image of the
symbols is parsed as the input, and the model gives an output con-
taining the symbol name. The current trend is to use deep learning
for this task. [14]

Input
Image

Image Pre-
processing

Eroded
Image

Line
Localization

Symbol
Detection

Note Head
Detection

Output
OMR

Gold
Standard

Pattern
Recognition

Fill Missing
Notes

Translation
to CMN

Performance
Analysis

Figure 1: The full pipeline.

4.4 Semantic Reconstruction
Based on the detected objects in the previous stage, the next step
is to derive the relationships between these objects. The relation-
ships can be either logical or implied. Logical relationships are for
example the notion that a note head and a stem together form the
note. The implied relationships include the combination of notes
with accidentals.

5 METHODOLOGY
In this section, the methodology is described. Before delving into
the individual parts of the constructed pipeline, a global overview
is provided.

(1) Image Preprocessing
(2) Staff-line Localization
(3) Symbol Detection
(4) Note Head Detection
(5) Data Analysis
(6) N-gram Predictions
(7) Encoding
As can be seen, the pipeline deviates slightly from the one pre-

sented in section 4. The main difference is in the implementation
of knowledge by means of N-grams.

Also, splitting the object detection stage into symbol and note
head detection deviates from the general framework. The full pipeline
is provided in Figure 1.

5.1 Building the Data Set
First of all, a data set needed to be built, as a suitable set was not
found. This set was built manually using three music scores as data
sources. These scores were from the Kyrie Eleison piece, each one
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written in a different clef. One score was written in the Alto clef,
another score in Bass clef, and the last one in Treble. Each symbol
was labelled individually. Annotating was done by using [2] as
a guideline. Furthermore, a second data set was created by only
taking the heads of the notes into account. All other objects were
therefore omitted. Finally, both data sets were divided into train
and test splits. before training.

5.2 Image Preprocessing
The original images of the music scores had to be processed in order
for them to be fit for use during the later stages of the pipeline.
Figure 2 shows an example of an image which is used as input in
the system.

Figure 2: The input image.

As many images had low contrast, it was hard to distinguish
open note heads from closed ones. Furthermore, the majority of
staff lines were either crooked or were interrupted by white spaces,
which made line detection difficult. The solution for these problems
were largely solved by applying the following steps.

During the preprocessing stage, images were turned into gray-
scale images. Using Otsu’s method [13], these images were then
reduced to binary images. Lastly, the properties derived from this
method were used to erode the original images. See Figure 3.

Figure 3: The eroded input image.

5.3 Staff-line Localization
After the image preprocessing stage was done, the lines needed to
be detected. In order to retrieve these lines, the Hough transform
[8] technique was applied. See Figure 4.

Figure 4: Detected Hough lines.

This stage was considered extremely critical, as ultimately, the
line height was the decisive factor for determining the notes.

Issues occurred using this method, as the image quality of the
scores fluctuated heavily. This caused the algorithm to find the

wrong number of lines. Therefore, rules were created in order to
retrieve exactly five lines per stave.

These rules were based on the gaps between the identified lines.
This proved necessary, as the Hough transformation could not
differentiate between detected horizontal lines on the same height.

These lines were therefore excluded based on the minimal line
gap requirement. This method resulted in a great improvement in
line localization in images.

The only issue remaining, was that the transformation could not
recognize all the lines in an image, resulting in less than five lines.
The solution which reduced the occurrence of this issue, was to
erode the image again, until five lines were detected.

The next step was to calculate the differences between the five
identified lines. The average value was determined of the difference,
effectively providing a true line gap. This value was then divided
by two, in order to visualize the implied lines. These lines include
those that are between the lines and those outside of the staves.
The latter lines are also known as ledger lines. This step was crucial
for determining the values of notes whose heads were not located
on top of one of the five lines. Finally, all the lines were visualized
on the original image. See Figure 5.

Figure 5: The derived lines.

5.4 Symbol Detection
After preprocessing the images and retrieving the position of the
lines, the first object detection was ready to be employed. This
detection was performed by training the Faster-R-CNN model from
the TensorFlow [1] framework on all the symbols that were present
in the original images. Training lasted for approximately 10.000
epochs. The output of this model contained the class names of the
detected symbols and the coordinates of their bounding boxes. See
Figure 6.

Figure 6: Bounding boxes surround the detected symbols.

5.5 Note Head Detection
A second object detection model was trained in order to retrieve
the position of the note heads. For this task, an extended method
of Faster R-CNN was used, namely Mask R-CNN [10]. This method
enabled the use of segmentation masks. This time, training lasted
only five epochs, mainly due to the simplicity of the task. See Figure
7.
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Figure 7: Bounding boxes surround the detected note heads.

5.6 Data Analysis
This subsection contains the bulk of the work done on the project.
Described here is how a small amount of data was transformed in
meaningful features used to understand what was detected in the
previous two stages. Some of these steps require basic knowledge
of music. Therefore, an overview of the properties is provided in
appendix 3.

After detecting both the symbols and the note heads, it was
possible to start working with the collected data. The data was
processed using the Pandas [12] package in Python.

5.6.1 The Individual Data Frames. Two data frames were created
based on the two object detection stages. The symbol detection of-
fered the following essential pieces of information; the coordinates
of the bounding boxes and the names of the classified items. Using
this basis, it was possible to derive new features.

In order to represent the data in chronological order, it was first
necessary to retrieve the x-values of the detected symbols. This
was possible by calculating the average coordinate values over the
lower left and lower right corner of the bounding boxes. These
values were then stores under the column named ’x’. Now it was
possible to sort the data frame on the value of the x coordinates.

After sorting, it was necessary to remove objects from the data
frame which were detected twice. This was done in order to prevent
the occurrence of overlapping bounding bounding boxes on the
same symbol. A calculation was done on the values of x, in order
to retrieve the average distance between symbols. Next, a grouper
function was applied that looked whether the distance between
two objects was equal to or larger than the average. If the objects
were decided to be in too close of a vicinity of each other, and the
class name was similar, then they were deemed to be the same
object, detected twice. The coordinates of the bounding boxes were
then averaged by the grouper function, effectively removing the
duplicate observation.

The next step concerned the acquisition of the y-values. This
was done by calculating the average over the values of the upper
right and lower left corner of the bounding boxes.

The following step was to create new columns and occupy them
with the surrounding objects of the current one. These columns
were created by shifting the column containing the current symbol.

This was an important step for identifying which notes were to
be affected by accidentals and dots. Again, additional columns were
added to the data frame. This time, they contained information
whether a note was preceded by either a sharp or a flat, or that it
was followed by a dot.

Based on the note names, the note length values were derived.
A semi-breve (a whole note) was assigned the note value 1. Accord-
ingly, the rest of the note classes were assigned values relative to
the value of the semi-breve. Therefore the minima, semi-minima,
fusa, and semi-fusa respectively got assigned the values 1/2, 1/4,

1/8, and 1/16. Finally, the breve got assigned the value 2, as having
the value of twice a whole note. With this step, the first data frame
was completed.

As mentioned earlier, the second data frame originated from
the note head detection results. Again, the data frame contains
information on the coordinates of the bounding boxes. In the same
fashion, the x and y values were derived, and the data frame was
sorted on the former values.

5.6.2 The Merged Data Frame. Next, the two data frames were
joined on the x-values. If the x-values were in close vicinity to each
other then it was decided to be the same object, i.e. a note. The
decision was based on whether the distance between the objects
was smaller than the computed average distance.

In the case of notes, the average y-value was taken from the
note head data frame. Now it was necessary to compare the heights
of the notes with the staff lines computed earlier. Based on the
detected clef, rules were set to determine which note was displayed.
Using a for loop, each line, in the list of lines, was compared to the
value of y. The line having the lowest absolute difference to the
y-value, determined on which line the note head was placed. This
was, logically, only performed for the notes, as other symbols were
independent of their height relative to the lines.

The line heights of the notes were then added to the data frame
and used to determine the note. A function was built that took into
consideration both the line height of the note and the detected clef
of the piece. Based on that, rules were written to retrieve the notes.

The final step, was to represent the key elements. This was also
done by applying a function. As explained in Appendix 3, the key
signature contains either a set of sharps or flats at the beginning
of the line. Therefore, it was necessary to differentiate between
accidentals used on individual notes and those used for the key
signature. Based on the x values, it was determined whether the
accidentals were used as key elements or not. Also, given the index
of the first note of the line in the data frame, it was possible to
exclude the sharps and flats that were not part of the key signature.
The effect of the key signature to move natural notes either one
semitone higher or lower was included. Also a note written to be
a semitone lower became a natural note, and vice versa, if it was
part of the notes affected by the key signature.

The effect of dots was also taken into account using a function
that multiplied the length of the note by one and a half each time a
note was followed by a dot.

5.7 N-gram Predictions
During the last phase of the pipeline, the N-gram algorithm was
applied. The N-grams were derived from a fourth music score, Kyrie
Eleison written in the Tenor clef. Two N-gram vocabularies were
built, one from the generated pieces, while the other originated
from the gold standard.

N-grams consisted of pitch-invariant notes, in order to focus
solely on the patterns of the note placements. These n-grams were
then used to train the random forest algorithm. Based on the sur-
rounding symbols, occupying the columns of the data frame, the
algorithm gave an output in which it aimed to predict the current
symbol.



DFLM ’19, , Iwan, et al.

The sequence of notes was determined by means of keys of a
piano. The distance between keys was determined, which made up
the sequential patterns of interest. For instance a C got assigned the
value of zero, while a C-sharp got assigned the value one, giving a
difference of one between them.

After retrieving the relative distance between notes, it was nec-
essary to retrieve N-grams. Chosen was to take 4-grams. This was
done by shifting the column in the data frame into both directions
of preceding and following notes.

The same process was used to retrieve the gold patterns, as the
gold standard objects were also added to a new data frame. The
choice for the random forest algorithm was made because it is an
ensemble algorithm. Multiple decision trees processed the data and
the end result was therefore the object with the highest weighted
prediction. Not taken into account in the patterns, were the rests,
dots, note durations and ties. A second method was employed to
retrieve suggestions for insertions. A sliding window approach was
used to match the patterns to the output. Using a set Levenshtein
of distance one, the strings were compared. This was done both
using the N-grams derived from the gold standard, as from those
derived from the output of the OMR tool.

The output of the OMR tool was analysed and the empty slots
were extracted to build another data frame. Then 4-grams were
derived, with the missing note in each of the available slots. To
denote the missing note, the number 1000 was filled in the empty
slot. Then these 4-grams are compared to the patterns found in
either the gold standard string or the output of OMR itself to find
patterns with a Levenshtein distance of exactly one. Namely, the
anomaly in the pattern being the 1000 spot. When a match was
found, it was replaced in the original query, only in those spots
where a note was missing. This to ensure that wrong insertion
would not occur. For the sliding window approach, the ten most
occurring patterns were taken into account.

5.8 Encoding
The final step was to transform the sequence into tinynotation.
Tinynotation is a module of the Music21 package [5] which allows
users to create music representations from strings. In order to
conform to the convention of this module, the pandas series first
needed to be rewritten. This was done by defining a function that
transformed the notes to their representation in tinynotation. This
included appending the note length, accidentals, dots, and ties
directly to the note names.

Then the series needed to be converted to a string, and be ap-
pended to a second string containing: ’tinynotation: ’. Now it was
possible to parse the string and obtain both a visual and auditory
representation of the generated music piece. The final visual repre-
sentation is displayed in Figure 8.

Figure 8: The translated sequence in Music21. Note that the
one missing note is highlighted with a black circle.

Applying the knowledge derived from the pattern recognition
phase, the empty slots were filled. Every note that was missing was

extracted from the main data frame and they were added to a new
data frame. In this data frame the missing note was determined
using the pattern, using either the previous note or the next note.
The predicted distance was taken into consideration relative the
note of interest and using a list containing all possible notes, the
missing note was to be filled in.

For example, the note F2-sharp holds index number 7, in the
list of notes. If a distance was predicted of minus 2, the index was
deducted by that number, therefore index 9, G2-sharp was to be
filled in. For instances that did not have a note preceding them,
the prediction relied on the next note instead. In such cases, the
predicted distance was added to the index of the next note, instead
of deducted.

6 EXPERIMENTS
In order to gauge the performances of the methods, the same set of
pages were evaluated. This was mainly put on the detection and
recognition of the individual symbols. The gold standard for these
pages was provided by the thesis supervisor. The following three
experiments were of interest.

First, the piece generated by the OMR tool was compared to the
gold standard. The second experiment concerned the performance
of the OMR tool combined with the pattern recognition machine
learning model. Both the gold standard and the own output were
used to train separate models. Again, the final output was compared
to the gold standard.

The last experiment used the pattern recognition model based
on the sliding window approach. Again the output was compared
to the gold standard, and the patterns were derived from either the
gold standard or the OMR output.

The full repository for this work can be found on GitHub1.

7 RESULTS
In order to evaluate the predicted sequence with the gold standard,
we opted to use the Levenshtein distance metric [11]. The algorithm
compares to strings in order to determine the minimal amount of
edits form one to the other. Edits in this context include insertions,
deletions, and substitutions.

7.1 Object Detection and Gold N-grams
After subjecting the output to the machine learned patterns, the
Levenshtein distance shrunk from 280 to 261. Both the Random
Forest (RF) and Sliding Window (SW) approaches, improved the
performance, using either the gold standard N-grams and those
that were derived from the OMR tool. As can be observed in Table
1.

7.2 Patterns
The patterns derived from gold are displayed in Table 2, while
those derived from the OMR output are displayed in Table 3. The
pattern matching is shown in Table 4, here the missing note was
replaced with the number 1000. A Levenshtein distance of exactly
one, therefore generates suggestions to fill in this missing note.
The patterns and frequencies differ a lot between the two, mainly

1https://github.com/Tomeriko96/Optical-Music-Recognition-Tool
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Table 1: Levenshtein distances to gold standard.

Method Levenshtein Precision
OMR 280 80%

Gold RF 263 81%
OMR RF 258 81%
Gold SW 260 81%
OMR SW 260 81%

Table 2: Patterns from gold standard.

Pattern Frequency
-2.0, -2.0, 4.0, -2.0 10
-2.0, -2.0, 4.0, -8.0 9
-2.0, 4.0, -8.0, 0.0 8
-2.0, -1.0, 3.0, -7.0 7
-2.0, -2.0, -2.0, 4.0 7
0.0, -2.0, -2.0, 4.0 7
-2.0, 4.0, -2.0, -2.0 7
-1.0, 3.0, -7.0, 0.0 6
0.0, 0.0, -2.0, -2.0 6
0.0, -2.0, -2.0, -2.0 5

Table 3: Patterns from OMR output.

Pattern Frequency
0.0, 0.0, 0.0, 0.0 18
-3.0, 0.0, 0.0, 0.0 4
-1.0, 4.0, -8.0, 0.0 3
0.0, 0.0, 1.0, 0.0 3
1.0, 3.0, -4.0, 1.0 3
3.0, -4.0, 1.0, 3.0 3
0.0, 1.0, -1.0, 1.0 3
0.0, 2.0, 0.0, 0.0 3
1.0, 0.0, 0.0, 0.0 3
0.0, 0.0, 0.0, -1.0 3

Table 4: Examples of pattern matching in the SW approach.

Missing Pattern Suggestion
0.0, 0.0, 1000, 1.0 0.0, 0.0, -1.0, 1.0
4.0, -8.0, 0.0, 1000 4.0, -8.0, 0.0, 6.0
0.0, 1000, -2.0, -2.0 0.0, 0.0, -2.0, -2.0

because of the missing notes and wrong classifications in the OMR
phase. Also a lot more zero’s are included in the patterns of the OMR
tool. These zero’s occur mostly after a missing note was preceded.
This would also explain the lower frequencies, due to repeating
patterns being interrupted by missing notes and having to start
over at zero. Nevertheless, the same improvement was achieved
by the patterns from the imperfect OMR tool, as from the gold
standard patterns.

8 DISCUSSION
One of the main caveats, of this project, was the lack of a suitable
dataset. Although building it was a valuable learning experience, it
might contain errors, due to a more limited musical knowledge at
the time of labeling. This can be expressed, for instance, by looking
at the labels of the different representations of the rests. In hindsight,
knowing that each rest is coupled to its own note, labelling could
have been more straightforward. Especially after finding out that
the tinynotation module visualizes the rests automatically based
on the note length.

Furthermore, the symbol labelling occurred weeks before the
note head detection was even thought of. This lead to the unnec-
essary labelling of the two different conformation of each note.
Originally the position of the note head was to be derived from the
bounding boxes generated in the first object detection. However,
this proved inconsistent as some boxes were slightly off, leading
to inconsistent note head positions. Therefore, the division in a
note with the head pointed upwards or downwards was, in hind-
sight, a poor labelling choice which also slowed down labelling and
required additional steps in the data processing.

Another limitation with regards to the dataset, is its small size.
As mentioned earlier, the dataset was built using three music scores,
all from the same piece. In order to have more varied data, a larger
corpora should have been used for labelling.

However, having a larger corpus, with for instance varying com-
poser, might have rendered certain N-grams useless, as it can not
be sure whether the different composer would have implemented
similar patterns.

Furthermore, the limits of the tinynotation module of music21,
lead to minor inconsistencies in transcribing the images. With re-
gards to note lengths, we were unable to display breves as being
double whole notes. The module allows user to append the follow-
ing values to notes: 1 for a whole note, 2 for half a note, 4 for a
quarter, 8 for an eight, and 16 for a sixteenth note. Furthermore,
issues occurred while constructing the modern output. After hours
of playing around with the music21 module, we were unable to
figure out how to display notes in certain clefs, using the tinynota-
tion module. This issue forced the output to be in the wrong clef,
and therefore not be accurate. Due to these two critical limitations
in the Tinynotation module, it was decided to manually append
information to a stream, instead of using Tinynotation, in the case
of certain clefs. The output image therefore became less visually
appealing, but the output was more accurate this way.

Due to the limited amount of gold standard data available, this
work only presents the findings on a small piece, written in one
clef only. In order to validate the findings in this paper, future
work should look into applying this framework on a larger corpus,
containing a variety of scores.

The degraded conditions of the original images have caused
the method to make mistakes. This has lead to missed symbols
and mis-classifications. In particular smaller details, such as note
heads and dots were either missed or mistaken. The conditions
also caused the algorithm to find less than five lines. A very small
amount of images caused this undesirable behaviour, even after the
preprocessing stage was repeated.
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Also, due to the inclusion of lyrics and capital letters, the Hough
transform algorithm tended to make mistakes in line detection.
The rough lines present in the mentioned object were therefore
mistakes for lines, which threw off the detection. This in cause lead
to the wrong localization of note heads and incorrect translations.
Therefore, for this application, the assumption holds that images
need to be cropped in such a way that no noise is present, such
as the aforementioned lyrics and capital letters. Nevertheless, seg-
mentation the staves from an image would be a useful feature to
have. When implemented, an entire page could be parsed and be
transcribed automatically, without the need to manually extract
the staves.

As the object detection is far from perfect, some notes aremissing
in the final representation. This also affects the N-grams as some
might have gone missing due to the mentioned limitation.

As can be seen from the images, some of the symbols detected
have a low percentage of confidence. This is mainly caused by the
low amount of training done on the data. If the training would
have been run for 40.000 epochs instead for the 10.000 epochs done
here, it might return suggestions with higher confidence, and also
identify those symbols it currently did not identify. Chosen was
ultimately to keep it at 10.000 epochs as training took very long on
the computer used.

Given that the second object detection fails to find a note head,
the note value must be derived from the first object detection. The
problem is that the bounding box encompasses the entire note,
therefore making it hard to get an accurate location of the note
head. While patterns do consist of symbols only, they are not in-
dependent from the metadata, such as the time signature such as
rhythm and pitch. In this project, the metadata was not taken into
account. However, future research may benefit from using such
data. Another limitation is the interference of the rests. Therefore,
the patterns derived may not be correct, as rests should have been
included.

Looking back at the chosen method of evaluation, Hamming
distance would have been the preferred method of evaluation. How-
ever, the algorithm requires that the input strings are of the same
length [9]. The tool built in this paper, is not perfect in detection and,
as a result, occasionally misses notes. Therefore, Levenshtein dis-
tance became the method of evaluation, foregoing the requirement
of equal lengths.

Finally, the symbol detection model was, in fact, never trained
on instances written in the Tenor clef, as the training set did not
consist of any pieces written in that clef. Due to similarities in
appearance, the Alto clef was therefore detected, which was part
of the training data.

9 CONCLUSION
In this paper, we set out to improve improve upon existing OMR
systems using knowledge derived from N-grams. These patterns
were derived once from a gold standard, and the other time from
the output of the OMR tool. These patterns were then used to test
two approaches. The first approach consisted of the unsupervised
machine learning algorithm was trained on the N-grams. The other
method took these patterns and used a sliding window matching
algorithm. Both approaches improved the prediction, both from the

gold standard as from the predicted output. Therefore, all research
question can be answered positively.

Given our limited amount of data to work with, future work
should focus on applying this approach on a larger corpus to vali-
date the results of this paper. The next step in this research is to
collect as much data as possible, preferably from scores originating
from various time periods, in order to fully exploit the potential
of the pattern recognition approach. Also, while this work only
focused on the use of pattern matching in the task of filling missing
notes, future work should look into the possibility of substitutions
and deletions. Lastly, to get the complete picture of the power of
the N-grams, future work should take into consideration permuta-
tions of patterns. The original pattern would then be considered
the prime pattern, its mirrored version on the y axis, the retrograde.
Conversely, the translation on the x-axis of the prime pattern would
be the inverse, and the translation of the inverse on the y-axis, the
retrograde-inverse. Recapitulating, with the current trends in OMR
and pattern recognition, it should be possible to get closer to an
application that can perfectly translate White Mensural Notation
without human intervention.
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