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Abstract. Despite the advatages of Linked Data as a data integration
paradigm, accessing and consuming Linked Data is still a cumbersome
task. Linked Data applications need to use technologies such as RDF
and SPARQL that, despite their expressive power, belong to the data
integration stack. As a result, applications and data cannot be cleanly
separated: SPARQL queries, endpoint addresses, namespaces, and URIs
end up as part of the application code. Many publishers address these
problems by building RESTful APIs around their Linked Data. How-
ever, this solution has two pitfalls: these APIs are costly to maintain;
and they blackbox functionality by hiding the queries they use. In this
paper we describe grlc, a gateway between Linked Data applications and
the LOD cloud that offers a RESTful, reusable and uniform means to
routinely access any Linked Data. It generates an OpenAPI compatible
API by using parametrized queries shared on the Web. The resulting
APIs require no coding, rely on low-cost external query storage and ver-
sioning services, contain abundant provenance information, and integrate
access to different publishing paradigms into a single API. We evaluate
grlc qualitatively, by describing its reported value by current users; and
quantitatively, by measuring the added overhead at generating API spec-
ifications and answering to calls.
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1 Introduction

Data integration across multiple sources is an important challenge in the devel-
opment of information systems [2]. The Linked Data [9] publishing paradigm is
designed to make the Web evolve into a global dataspace [1] through syntaxes
for data standardization and linkage, and query languages (RDF, SPARQL).
These technologies have steep learning curves and limited adoption [24], which
has resulted in a dataspace that is quite heterogeneous compared to, and distinct
from, more mainstream Web-based architectures that use RESTful Application

∗This paper is a significantly revised and extended version of a paper about an
earlier version of grlc presented at the SALAD 2016 workshop [16].



Programming Interfaces (APIs) to mediate between the application and the un-
derlying data. This heterogeneity is very tangible when we access Linked Data,
which can be done in multiple ways: by submitting SPARQL queries to end-
points, downloading RDF dumps, parsing RDFa in HTML pages, or as Linked
Data Fragments; to name a few. Different requirements drive the choice for each
of these methods, but it is the publisher who is in control. Client applications
need to be specifically tailored to each of these methods to consume Linked
Data. This creates two problems. First, the data models easily become inter-
twined with application code, generating hard-coded queries that are difficult
to maintain and share. Second, the disconnect with mainstream remote data
access in Web development (which simply requires HTTP and JSON) under-
mines the adoption of Semantic Web technology, decreasing the “market value”
of published Linked Data.

A number of solutions have been proposed to overcome these problems. Work
such as [23] and the smartAPI [26] propose to expose REST APIs as Linked
Data. Despite the value of this for clients with high expressivity requirements,
these solutions pose an additional (API) integration problem for clients that need
to query Linked Data without having to learn complex query languages, with
low expressivity requirements, and in conjunction with other non-Semantic Web
data sources. We aim at this specific target user community. Accordingly, we
build from existing work targeting this community, such as the OpenPHACTS
platform [6], LDtogo [18] and the BASIL server [3], which deploy APIs on top of
their internal Semantic Web stacks, functioning as wrappers around their Linked
Data endpoints. However, these solutions have two pitfalls. First, the APIs need
to be routinely written and maintained by (costly) developers. Second, they
typically blackbox the queries they use under the hood, offering a mutually
exclusive solution of either using queries or API calls, but not both.

Publishing an API that simply executes Semantic Web queries should be as
easy as sharing these queries. This is the basic idea of grlc [16], which clearly
separates the workflows of query maintenance and API construction. As a result,
it allows for a neat, open and collaborative management of queries (typically via
GitHub repositories), and uses the logic of this management to build equiva-
lent Linked Data APIs automatically on demand. In this paper, we extend grlc

turning it into a generic Linked Data gateway that provides uniform API access
to any Linked Data published in SPARQL endpoints, Linked Data Fragments
servers, RDF dumps, or RDFa embedded in HTML pages. Its added values
are the clear decoupling between different Linked Data access requirements; the
zero-effort of coding APIs for accessing Linked Data; and the non-blackboxing
of queries, which remain always available. Concretely, the contributions of this
paper are:

– Architectural guidelines for decoupling semantic queries from application
code (Section 2);

– A system architecture that generates OpenAPI specifications and enables
API call name executions using remote Git repositories containing SPARQL,
triple pattern fragments, dump, or RDFa queries (Sections 2, 2.3);
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– Rich features that such guidelines and architecture enable, like zero-effort
versioning and API provenance (Sections 2.5, 2.6)

– A qualitative evaluation (Section 3.1) providing evidence of use and fulfill-
ment of requirements by users;

– A quantitative evaluation (Section 3.2) measuring grlc’s overhead.

2 System Architecture

grlc3 is a lightweight middleware that automatically builds complete, well doc-
umented, and neatly organized Linked Data APIs on the fly in a query-centric
way, effectively allowing client applications to access any Linked Data via REST-
ful APIs. This includes Linked Data exposed in SPARQL endpoints, but also
in Linked Data Fragments servers [25], RDF dumps, and HTML pages enriched
with RDFa (see Section 2.3). grlc provides three basic operations: (1) it gener-
ates the OpenAPI specification for the queries contained in a given repository;
(2) it forwards browsers to the Swagger UI4 to provide an interactive user-facing
frontend of the API contents; and (3) it translates http requests to call the op-
erations of the API against a SPARQL endpoint with several parameters. A
docker bundle for easy deployment is available in Docker Hub via docker pull

clariah/grlc

grlc’s system architecture is shown in Figure 1. The basic idea behind grlc is
depicted at the bottom: an external query provider (typically GitHub or GitLab)
is responsible for storing, versioning and exposing semantic queries via Git and
http. This decouples these queries, and their curation workflows, from applica-
tions using them; and in particular, from applications generating APIs on top of
them. The typical use cases start when a client application wants to generate an
OpenAPI spec or execute a call name. When generating an OpenAPI spec, grlc
retrieves metadata from the query provider (query names, descriptions, versions,
endpoints, etc.) and uses them to build a valid API specification that mimics
the organization of the query repository. To extract these metadata, grlc uses
a YAML parser for enriched query decorators (see Section 2.1) and a parame-
ter parser for mapping API parameters with query variables (see Section 2.2).
When executing a call name, grlc retrieves the original content from the query
provider, and uses the query rewriter to replace query variables with parameter
values. Next, it sends the rewritten query to its corresponding endpoint, gets the
results, and passes them on to the client application.

To run these workflows, grlc uses a simple API that allows client applications
to express what APIs (call names) to generate (execute). Let us assume that our
query provider is GitHub, and that we are using the public instance of grlc

at http://grlc.io/.5 If the GitHub repository containing queries is at https:

//github.com/:owner/:repo, then the grlc API provides the following routes:
3Source code at https://github.com/CLARIAH/grlc; public instance at http://grlc.io/.
4See https://github.com/swagger-api/swagger-ui
5These are the defaults, but can be customized in different configuration files.
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Fig. 1: Architecture of grlc. Linked Data sources and query providers are external
to the system, and used to access and build Linked Data APIs.

– http://grlc.io/api/:owner/:repo/spec: JSON OpenAPI-compliant specifica-
tion for the queries of :owner at :repo.

– http://grlc.io/api/:owner/:repo/api-docs: Swagger-UI, rendered using the
previous JSON spec, as shown in Figure 1.

– http://grlc.io/api/:owner/:repo/: Same as previous.
– http://grlc.io/api/:owner/:repo/:operation?p_1=v_1...p_n=v_n: http GET re-

quest to :operation with parameters p1, ..., pn taking values v1, ..., vn.

2.1 Query Decorators

To generate rich, accurate and descriptive OpenAPI specificaitons, we use SPARQL
decorators to add metadata in queries at the query provider. These metadata
do not pollute the query contents, since we implement them as comments before
the query. Each query translates into an API operation. The syntax is depicted
in the following example6:
#+ summary: A brief summary of what the query does

#+ method: GET

#+ endpoint: http://dbpedia.org/sparql

#+ tags:

#+ - I am a tag

#+ - Awesomeness

#+ enumerate:

6Additional examples can be found at http://grlc.io
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#+ - var_1

#+ - var_2

#+ defaults:

#+ - var_1 : "foo"

#+ pagination: 100

These indicate the summary of the query (which will document the API
operation), the http method to use (GET, POST, etc.), the endpoint to send the
query to, and the tags under which the operation falls in. The latter helps to
keep operations organized within the API. The decorator enumerate allows for
generating the enumerations (possible values) of parameters for the specified
variables; similarly, defaults allows specifying a default value for a parameter
(see Section 2.2). The pagination value tells grlc to return the query results in
pages of the indicated result size.

In addition, we suggest to include two special files in the repository. The first
is a LICENSE file containing the license for the SPARQL queries and the API.
The second is the endpoint.txt file, with the URI of a default endpoint to direct
all queries of the repository; this allows for fast endpoint switching and enables
an easier query reuse. grlc gives preference to the endpoint at the #+ endpoint

decorator, then the endpoint.txt file, and finally a default one7.

2.2 Parameter Mapping

It is often useful for SPARQL queries to be parameterized. This happens when
a resource in a basic graph pattern (BGP) can take specific values that affect
the result of the query. Previous work has investigated how to map these values
to parameters provided by the API operations [3,6].

grlc follows BASIL’s convention for mapping HTTP parameters to SPARQL8,
by interpreting some “parameter-declared” SPARQL variables as parameter place-
holders. An example parametrized query9 is shown in Listing 1.1. SPARQL vari-
able names staring with ?_ and ?__ indicate mandatory and optional parameters.
If they end with _iri or _integer, they are expected to be mapped to IRIs and lit-
eral (integer) values. API operations of the form http://grlc.io/:owner/:repo/:

operation?p_1=v_1...p_n=v_n using these queries are executed as follows: grlc first
retrieves the raw SPARQL query from the query provider (see Figure 1); and
secondly it replaces the placeholders by the parameter values v1, ..., vn supplied
in the API request. After this, the query is submitted to the endpoint (see Secion
2.1) and results are forwarded to the client.

Parameter enumerations. To guide users at providing valid parameter
values, grlc tries to fill the enumeration get->parameters->enum of the OpenAPI
specification, which (optionally) lists avilable parameter values. To generate it,
grlc sends an additional SPARQL query to the endpoint, using the original BGP
but projecting all parameter variables to obtain their bindings. Figure 2 shows
an example of how the Swagger UI displays parameter enumerations.

7In http://grlc.io/ this is DBpedia’s endpoint.
8See https://goo.gl/K0YQDK
9The original query can be found at https://goo.gl/P5nvml
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1 SELECT (SUM(?pop) AS ?tot) FROM <urn:graph:cedar-mini:release> WHERE {

2 ?obs a qb:Observation.

3 ?obs sdmx-dimension:refArea ?_location_iri.

4 ?obs cedarterms:Kom ?_kom_iri.

5 ?obs cedarterms:population ?pop.

6 ?slice a qb:Slice.

7 ?slice qb:observation ?obs.

8 ?slice sdmx-dimension:refPeriod ?_year_integer.

9 ?obs sdmx-dimension:sex ?_sex_iri.

10 ?obs cedarterms:residenceStatus ?_residenceStatus_iri.

11 FILTER (NOT EXISTS {?obs cedarterms:isTotal ?total }) }

Listing 1.1: Example of a parametrized SPARQL query (prefixes ahave been
omitted).

Fig. 2: Screenshot of the Swagger user interface rendering parameter enumera-
tions generated by grlc.

2.3 Access to Any Linked Data

grlc acts as a multiplexer between the different Linked Data access methods.
The currently supported access methods include SPARQL endpoints, Linked
Data Fragments servers, RDF dumps, and HTML pages with RDFa markup.
SPARQL queries are detected as files with the extensions .rq and .sparql in
the remote repository (.tpf for triple pattern fragments). Queries against RDF
dumps and HTML embedded RDFa are detected by the decorators #+ mime:

turtle10 and #+ mime: rdfa; in such cases the endpoint must point to RDF/RDFa
resources. This provides three advantages for Linked Data consumers. First, it
hides from them the specific Linked Data access method used by publishers,
offering a universal Web API that operates over these methods and only demands

10The xml, n3, nt, trix and nquads syntaxes are also supported.
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HTTP requests. Second, it integrates Linked Data sources independently of these
publication methods into a standard Web API. And third, it allows for quickly
and effectively switching the queries targets if needed.

2.4 Content Negotiation

grlc supports content negotiation at two different levels: by request, and by URL.
By request, grlc checks the value of the Accept header in incoming http requests.
By URL, grlc checks whether a route calling an API operation ends with a
trailing .csv, .json or .html. In both cases, the corresponding Accept http header
is used in the request to the SPARQL endpoint, delegating support of specific
content types to each endpoint. When the response from the server is received,
grlc sets the Content-Type header of the client response to match that received
by the endpoint, and therefore it only proxies both requests and responses.

2.5 Commit-based APIs

Often, applications depend on specific versions of APIs and queries to function
properly. grlc uses the underlying versioning logic of Git to generate API ver-
sions that match the different query versions. The default behavior is to use the
contents of the HEAD pointer in the master branch of the query provider repos-
itory. In this case, grlc’s routes work as described in Section 2. Otherwise, the
following routes use commit hashes to interact with the API of a commit-specific
version of the queries:
– http://grlc.io/api/:owner/:repo/commit/:sha/spec: JSON OpenAPI-compliant

specification for the queries of :owner at :repo with the commit hash :sha.
– http://grlc.io/api/:owner/:repo/commit/:sha/api-docs: Swagger-UI for the

commit hash :sha, rendered using the previous JSON spec, as shown in
Figure 1.

– http://grlc.io/api/:owner/:repo/commit/:sha/: Same as previous.
– http://grlc.io/api/:owner/:repo/commit/:sha/:operation?p_1=v_1...p_n=v_n:

http GET request to commit hash :sha of :operation with parameters p1, ..., pn
taking values v1, ..., vn.

In these cases, the OpenAPI specification will be generated on the basis of
what that specific commit contains; calls to commit-specific operations work
likewise. To ease user interaction and browsing across versions, we add links to
the generated OpenAPI spec and Swagger-UI to the next and previous versions
(i.e. commit), if available. All APIs generated by grlc are versioned using their
corresponding commit hashes.

2.6 Provenance

One advantage of grlc over other Linked Data API methods is that it does not
use APIs to blackbox queries, allowing both queries and APIs to be used simul-
taneously. To further enhance its transparency and explainability, grlc generates
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provenance using the W3C PROV [7] standard in two different ways. First, it
generates a graph representing the workflow of creating the OpenAPI specifca-
tion by reusing externally retrieved queries. Second, it adds to this graph the
PROV representation of the Git history behind all queries reused, by calling
Git2PROV [4]. To allow the exploration of all this provenance information, we
integrate the visualizations of PROV-O-Viz [10], accessible via an Oh yeah?
button in the Swagger-UI page of the API specification.

2.7 SPARQL2Git

Interacting with languages like SPARQL and technologies like Git can be tedious
for some users. To alleviate this, grlc works in conjunction with another tool:
SPARQL2Git11 [17]. SPARQL2Git combines a user interface for comfortably
editing and trying SPARQL queries and their decorators (see Section 2.1), with
a transparent use of the GitHub API. Users can “save” versions of their queries
and the system deals with managing commits on their Git repositories. A grlc

button is always accessible to try out the APIs generated from their committed
queries.

3 Evaluation

We evaluate grlc in two different ways: qualitatively, and quantitatively. In the
qualitative evaluation, we provide testimonies of the utility of grlc for (third
party) organizations and projects. In the quantitative evaluation, we study the
performance of grlc. First, we investigate its overhead over direct SPARQL
queries (Section 3.2). Secondly, we benchmark the speed in which it generates
OpenAPI specifications (Section 3.2).

3.1 Qualitative Evaluation

From the start of its operation in July 2016, the public instance of grlc has
attracted 646 unique visitors, 46.4% of return rate, and generating 1,205 sessions.
grlc has also attracted the attention of external developers, who have sent 13 pull
requests that have been integrated into the master branch. A list of community
maintained queries and matching APIs is available at http://grlc.io.

In this section we evaluate the requirements satisfied by grlc in a number of
external institutions in 6 different domains where grlc is being currently used. We
asked members of these institutions to describe their use cases, the advantages
and disadvantages of addressing them by using grlc, and their motivation for
choosing it over other solutions.

11See http://sparql2git.com
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DANS: Historical Statistics The Netherlands Institute for Permanent Access
to Digital Research Resources (DANS) publishes the Dutch historical censuses
(1795–1971) as Linked Data [15].12. Queries across this data are maintained on
GitHub. These queries are used across various client applications,13 and other
organizations (Statistics Netherlands, a.o.) inspiring the need for a shared API.
The then existing lightweight solutions, such as BASIL14 and implementations
of the Linked Data API created a maintenance problem as they require one to
keep multiple copies of the same queries in different places. Given the frequency
of mutations in the queries, this was problematic. The grlc system allows queries
to be maintained in a single location, and offers an ecosystem where SPARQL
and non-SPARQL savvy applications coexist.

IISH: Social History The International Institute for Social History partners in
the CLARIAH15 project for digital humanities. Typical social history research
requires querying across combined, structured humanities data, and perform-
ing statistical analysis in e.g. R [11]. Given that there are potentially infinitely
many such research queries, building a one-size-fits all API is not feasible. The
R SPARQL package [8] allows one to use SPARQL queries directly from R. How-
ever, this results in hard-coded, non reusable, and difficult to maintain queries.
As shown in Figure 3, with grlc the R code becomes clearer due to the decou-
pling with SPARQL; and shorter, since a curl one-liner calling a grlc enabled
API operation suffices to retrieve the data. Furthermore, the exact query feeding
the research results can be stored, and shared with fellow scholars and in papers.

National eScience Center: Cultural Heritage The National eScience Center uses
grlc in a tool for Linked Data exploration of cultural heritage data (Dive+). The
Dive+ UI calls the grlc-generated API to access underlying data. The grlc code
is included as a library to augment parts of the Dive+ API that are not Linked
Data data-access related (e.g. search, legacy data). The advantage of using grlc

is that it allows NLeSC to manage SPARQL queries separate from the rest of
the API – this enables, for instance, to have different queries without having to
deploy a new version of the API. NLeSC used grlc instead of other solutions
because it was easy to deploy and open source.

TNO: FoodCube The Netherlands Organisation for Applied Scientific Research
(TNO) uses grlc in a food related project for the municipality of Almere. Food-
Cube aims to provide an integrated view to all kinds of datasets related to the
food supply chain; domain knowledge and interesting domain questions are the
core focus. FoodCube uses grlc to provide ‘FAQ’ (Frequently Asked SPARQL

12This was done through the CEDAR project, see http://www.cedar-project.nl/ and
https://github.com/CEDAR-project/Queries

13YASGUI-based browsing: http://lod.cedar-project.nl/cedar/data.html, drawing
historical maps with census data: http://lod.cedar-project.nl/maps/map_CEDAR_women_

1899.html
14https://github.com/the-open-university/BASIL
15http://clariah.nl/
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Questions) for those who would prefer REST over SPARQL, but also to explore
the data. This is made possible by the ability to annotate the SPARQL queries
with keywords and a description.

NewGen Chennai: Conference Proceedings NewGen uses grlc to build the IOS
Press ECAI API. Their goal is to expose the ECAI conference proceedings not
only as Linked Data that can be used by Semantic Web practitioners, but also as
a Web API that web developers can consume. This is useful for bringing together
and bridging the two communities and rich ecosystems of software. Key features
of grlc for this use case are query curation, sharing and dissemination. For this
last point, being able to provide metadata to individual queries is reportedly
very useful. NewGen finds easy to use and document the API, and to set-up.
Similarly, the use of Git as a backend is an advantage, and they consider the grlc

development community helpful. SPARQL2Git (see Section 2.7) emerged as a
requirement for a query curation frontend. Other alternatives16 were considered,
but the two advantages of grlc were its use of GitHub for ingesting community
curated queries, and the minimum infrastructure/resources needed for building
APIs.

EU RISIS: Science, Technology and Innovation grlc is currently used within the
Semantically Mapping Science (SMS) platform17 for sharing of SPARQL queries
and thereby their results among multiple researchers. As technical core within
the RISIS EU project18, SMS aims to provide a data integration platform where
researchers from science, technology and innovation (STI) can find answers to
their research questions. The SMS platform provides a faceted data browser
where interactions of non-linked-data expert users are translated into a set of
complex SPARQL queries, which are then run to aggregate data from relevant
SPARQL endpoints. One of the challenges within the platform was how to share,
extend and repurpose user-generated queries in a flexible way. grlc helps to
address this issue by providing a URI for the resulted queries and by supporting
collaborative update of those queries. Furthermore, creating Linked Data APIs
on top of grlc enables external applications to reuse and exploit some of the
features of the SMS platform, e.g. SMS geo-services to annotate addresses within
a spreadsheet document.

3.2 Quantitative

Call Execution Overhead Here, we quantify the added overhead of grlc as
a middleware between Web clients and Linked Data providers. To do so, we
compare the execution times of sending SPARQL queries directly to a SPARQL

16Reportedly https://github.com/danistrebel/SemanticGraphQL, https://github.com/

nelson-ai/semantic-graphql and https://github.com/ColinMaudry/sparql-router/wiki/

Using-SPARQL-router.
17http://sms.risis.eu
18http://risis.eu
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Fig. 3: The use of grlc makes Linked Data accessible from any http compatible
application.

endpoint over HTTP, and calling the equivalent service names containing such
SPARQL queries using grlc.

We use the SPARQL queries of the SP2Bench SPARQL Performance Bench-
mark19 (SP2B) [22]. All runs in one single node inside a lxc container running
Linux Ubuntu 14.04.4 LTS, an Intel(R) Xeon(R) E5645 CPU at 2.40GHz, and
98GB of memory. As a backend triplestore we use a Virtuoso Open Source Edi-
tion 6.1.6. To avoid the influence of network traffic on our tests, we configure
grlc to use local namespaces to resolve API calls and dereferencing query con-
tents.20 To make comparisons fair, both systems are queried using curl, making
HTTP GET requests, and requesting the query results as CSV by setting the
HTTP header Accept: text/csv. We disable all grlc’s caching mechanisms.21

Figure 4 shows the results of executing the SP2B queries on datasets of 50K,
500K, and 5M triples, sending HTTP requests to (a) directly to the SPARQL
endpoint (submitting the query as a parameter of the request); and (b) using
grlc (calling the equivalent call name in a Linked Data API generated using
such queries22). We observe that, in queries that Virtuoso takes a considerable
time (above 100ms), grlc only adds a marginal overhead (e.g. q2, q7, q9, 11 );
contrarily, the impact of grlc is higher in fast queries below that threshold. We
calculate the relative overhead of grlc with tg−tv

tg
, where tg is the time consumed

by grlc, and tv is the time consumed by the SPARQL endpoint. Figure 5a shows
the dependency of this ratio with the total execution time tg. We observe that,
for queries that SPARQL endpoints can solve very quickly (e.g. less than 200ms),
more than 50% of the time is spent in grlc rather than at the endpoint. In even
faster queries (e.g. below 100ms), the ratio taken by grlc is even larger (above
75% of the time). Nonetheless, in queries that take more than 400ms grlc’s
impact is more limited (less than 25%).

19See http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B
20For this, we implement a basic GitHub-like API, see https://github.com/

albertmeronyo/dummyhub
21All measurements in this section apply to the first execfution only; subsequent

executions are immediate due to caching.
22See https://github.com/albertmeronyo/sp2b-queries and http://grlc.io/api/

albertmeronyo/sp2b-queries
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Fig. 4: Execution time of SP2B queries on 50K, 500K and 5M triple datasets,
using: (a) Virtuoso alone; and (b) an instance of grlc that exposes the same
queries as an API.

The absolute overhead of grlc is given by tg − tv, and equals on average over
all queries 96.86± 46.83, 77.18± 46.48, and 80.87± 48.14 for the three dataset
sizes. We observe here that, as expected, the cost of grlc is independent of the
dataset size. However, there are some fluctuations in this cost that make it non-
constant. A cause for the variability in grlc’s absolute cost can be observed in
Figure 5b, which shows a linear relationship between grlc’s absolute overhead
with respect to the size of the SPARQL queries. In summary, the penalties of
grlc’s additional HTTP requests (needed for retrieving the query contents, the
endpoint’s URI, etc.) and their payloads are important contributors to its cost.
In our tests, this cost is never higher than 187.9ms.

OpenAPI Specification Construction Here, we evaluate the cost of gener-
ating OpenAPI specifications with grlc. We use the same grlc instance (i.e. local
API and query resolution) as described in the previous experiment (Section 3.2).

We create various OpenAPI specifications of different sizes and types. Spec
sizes are determined by the number of call names (i.e. queries) contained in the
spec, and we generate specs of 1, 10, 100 and 1000 call names. Query types are
determined by the features typed in the query: we generate plain queries, con-
taining only the query itself; decorators queries, also containing YAML metadata
(endpoint URI, query summary, HTTP method, pagination, tags); and enum,
also containing enumerated parameters. Figure 6 shows the time grlc spends on
creating these specifications. We observe that in all cases this cost is linear with
respect to the spec sizes (the time axis is in log scale). For APIs of conventional
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(a) Execution time of a callname in grlc

(x-axis), and share of this time taken by
grlc (y-axis).

(b) grlc absolute overhead (y-axis) de-
pending on the total size of a callname’s
query (x-axis).

Fig. 5: Breakdown of grlc’s overhead, and its dependency with total execution
times and query size.

size (i.e. between 10 and 100 call names) containing only plain queries, grlc can
generate specs between 335.4± 12.43 and 3, 026.7± 41.28ms. The cost of adding
useful decorators is only relatively more expensive for small APIs of 10 call names
(510.8 ± 27.70ms), converging to the cost of plain queries (3, 388.5 ± 27.72ms)
for larger 100 call name APIs. APIs containing many enumerated parameters
are very expensive to generate (34, 658.7±70.21ms for 10 call names), but single
queries are more affordable (3, 487± 18.32ms).

4 Related Work

Decoupling Linked Data queries from the applications that use them follows
principles of encapsulation and abstraction. There is abundant work in so-called
SPARQL query repositories, which are fundamental to study the efficiency and
reusability of methods querying Linked Data. SPARQL query logs, for instance,
have been used to study differences between queries by humans and machines
[20], and to understand how queried entities are semantically related [12]. Saleem
et al. [21] propose to “create a Linked Dataset describing the SPARQL queries
issued to various public SPARQL endpoints”. Loizou et al. [14] identify (combi-
nations of) SPARQL constructs that constitute a performance hit, and formulate
heuristics for writing optimized queries.

The Semantic Web has developed a large body of work on the relationship
between Linked Data and Web Services [5,19]. In [23], authors propose to ex-
pose REST APIs as Linked Data. These approaches suggest the use of Linked
Data technology on top of Web services. Recently, the smartAPI [26] has pro-
posed API building blocks for clients with with high expressivity requirements.
Our work is related to results in the opposite direction, concretely the Linked
Data API specification23 and the W3C Linked Data Platform 1.0 specification,

23https://github.com/UKGovLD/linked-data-api
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Fig. 6: Performance of grlc at creating OpenAPI specifications of different sizes
and types.

which “describes the use of HTTP for accessing, updating, creating and deleting
resources from servers that expose their resources as Linked Data”24. Kopecký
et al. [13] address the specific issue of writing (updating, creating, deleting)
these Linked Data resources via Web APIs. However, our work is more related
to providing APIs that facilitate Linked Data access to a variety of publishing
mechanisms. SPARQL is the most popular among such supported mechanisms in
the OpenPHACTS Discovery Platform for pharmacological data [6], LDtogo [18]
and the BASIL server [3]. These approaches build Linked Data APIs compliant
with the Swagger RESTful API specification25 that function as wrappers around
SPARQL endpoints. Inspired by this, our work contributes additional: (a) decou-
pling with respect to the query storage and maintenance infrastructure, which
we outsource to code repository providers; (b) abstraction over various Linked
Data access methods (Linked Data Fragments, RDF dumps, HTML+RDFa) be-
sides SPARQL; and (c) tools for automatically building well-documented API
specifications.

5 Conclusions and Future Work

We have presented grlc, an automatic and query-centric method for enabling
routine access to any Linked Data. grlc leverages the decoupling of semantic
queries from applications, allowing query-based and API-based access simulta-
neously. It generates uniform and universal Web APIs irrespective of the Linked
Data publishing method, making these Linked Data consumable and accessi-
ble to the mainstream Web community. It uses Git features to transparently

24https://www.w3.org/TR/2015/REC-ldp-20150226/
25https://github.com/OAI/OpenAPI-Specification
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provide versioning and provenance. In the future, we plan on extending this
work in multiple ways. First, we will enlarge our current supported infrastruc-
tures (GitHub, GitLab, SPARQL, dumps, etc.) to cover increasing requirements
demanded by users. Secondly, we devise a JSON transformation language for
customizing the structure of API results. Finally, we intend to investigate the
reusability, exchangeability, and linkability of semantic query catalogs created
by users of grlc.
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